Pre-mechanism for the Swern Oxidation: formation of chlorodimethylsulfonium chloride.

August 25th, 2023

The Swern oxidation[1] is a class of “activated” dimethyl sulfoxide (DMSO) reaction in which the active species is a chlorodimethylsulfonium chloride salt. The mechanism of this transformation as shown in e.g. Wikipedia is illustrated below. However, an interesting and important aspect of chemistry is not apparent in this schematic mechanism and to rectify this, a full computed mechanism is laid out below, for which the FAIR data has a DOI: 10.14469/hpc/13151
Read the rest of this entry »

References

  1. K. Omura, and D. Swern, "Oxidation of alcohols by “activated” dimethyl sulfoxide. a preparative, steric and mechanistic study", Tetrahedron, vol. 34, pp. 1651-1660, 1978. http://dx.doi.org/10.1016/0040-4020(78)80197-5

Blue blood.

August 7th, 2023

Respiratory pigments are metalloproteins that transport O2, the best known being the bright red/crimson coloured hemoglobin in human blood. The colour derives from Fe2+ at the core of a tetraporphyrin ring. But less well known is blue blood, and here the colour derives from an oxyhemocyanin unit based on Cu1+ (the de-oxy form is colourless) rather than iron. See below for the carapace of a red rock crab.

Read the rest of this entry »

Physical Sample identifiers – the future?

July 12th, 2023

I have variously talked about persistent identifiers on this blog. These largely take the form of DOIs (Digital object identifiers), and here they relate to either journal articles or datasets associated with either the article or the blog post or both. Other disciplines, particularly the earth sciences, have long used persistent identifiers (PIDs) to identify physical objects rather than digital ones. One of my ambitions is to assign such identifiers to a small but highly historical collection of physical objects in my possession, as described at this post. As a prelude to this project, here I describe some ways of searching for physical objects that have been assigned a PID. Thanks Rorie for providing these! 

Read the rest of this entry »

Diberyllocene — and Lithioborocene?

June 18th, 2023

Sometimes, the properties of a molecule are predicted long before it is synthesised. One such is diberyllocene. I first encountered a related molecule, beryllocene itself, many moons ago.[1] This was unusual because unlike the original metallocenes, the metal atom was not symmetrically disposed between the two cyclopentadienyl faces. Now diberyllocene is finally reported in which replacing one Be by Be-Be induces (according to calculation, D2) symmetry[2]. I will not repeat the excellent analysis of the wavefunction reported in this article, but confine myself to showing two molecular orbitals which examplify its bonding.

Read the rest of this entry »

References

  1. M.J.S. Dewar, and H.S. Rzepa, "Ground states of molecules. 45. MNDO results for molecules containing beryllium", Journal of the American Chemical Society, vol. 100, pp. 777-784, 1978. http://dx.doi.org/10.1021/ja00471a020
  2. J.T. Boronski, A.E. Crumpton, L.L. Wales, and S. Aldridge, "Diberyllocene, a stable compound of Be(I) with a Be–Be bond", Science, vol. 380, pp. 1147-1149, 2023. http://dx.doi.org/10.1126/science.adh4419

The Pinacol rearrangement.

June 13th, 2023

This is a venerable organic reaction, which curiously I have not previously covered here. First described in 1859, its nature was only properly elucidated in 1873. It is a member of a class of reaction I have previously named “solvolytically assisted pericyclic”, or “perisolvolytic“. Here I explore some of the subtle stereoelectronic effects observed for this apparently simple reaction.

Read the rest of this entry »

“For chemists, the AI revolution has yet to happen”.

May 25th, 2023

This editorial from Nature[1] is a timely reminder of the importance of data. But also, not just any data, but “accurate and accessible training data“. Accessible of course is one of the attributes of FAIR (Findable, Accessible, Interoperable and Re-usable). The editorial also states “data need to be recorded in agreed and consistent formats, which they are not at present“. That is covered by the I and R of FAIR, often applied in conjunction with metadata recording the Media type that the data is held in (See DOI https://doi.org/jvk9 for examples of the use of Media types in chemical computation and chemical NMR). Again, “The best possible training sets would also include data on negative outcomes“. This relates to the separation of the two publication processes, namely the article itself (or the story behind the data) and the data itself as a first class scientific object. Thus when we publish FAIR data in association with articles, the data archive will often contain data that is not used in the article itself (perhaps because it led to a negative outcome), but is nevertheless part of the FAIR data collection for that topic. Even if the data does not lead to journal publication, publishing it in a data repository means it will not be lost. Somebody (or AI software) may still find it useful.

Read the rest of this entry »

References

  1. "For chemists, the AI revolution has yet to happen", Nature, vol. 617, pp. 438-438, 2023. http://dx.doi.org/10.1038/d41586-023-01612-x

Tunable aromaticity? An unrecognized new aromatic molecule?

May 21st, 2023

Some time ago in 2010, I showed a chemical problem I used to set during university entrance interviews. It was all about pattern recognition and how one can develop a hypothesis based on this. In that instance, it involved recognising that a cyclic molecule which appeared to have the cyclohexatriene benzene-aromatic pattern 1 was in fact a trimer of carbon dioxide. Perhaps small amounts of this aromatic molecule exist in solutions of fizzy drinks? Analysing these patterns occupied about 10-20 minutes of an interview, and although you might think I was posing a difficult challenge, many students successfully rose to it! Now I revisit, but with a slightly better reality check on a related molecule 2 (cyanuric acid).

Read the rest of this entry »

One vs two bond rotation – An example using Acyl amides

April 3rd, 2023

One of the important aspects of chemical reaction mechanisms is the order in which things happen. More specifically, the order in which bonds make or break when there are more than two involved in undertaking a reaction. So we have:

Read the rest of this entry »

A ROR Persistent Identifier for the WATOC organisation – helping to make scientific connections.

March 9th, 2023

Science frequently works by people making connections between related (or even apparently unrelated) concepts or data. There are many ways of helping people make these connections – attending a conference or seminar, searching journals for published articles and nowadays also searching for data are just a few examples. For about 20 years now, one technology which has been helping to enable such discoveries is what are called “Persistent IDentifiers” or PIDs. These are unique labels which can be attached to a (scientific) object such as a journal article, a dataset or a researcher. The PIDs for the first two examples have become better known as DOIs (digital object identifier), the last is known as an ORCID. The PID is registered with a registration authority. Two of the oldest and  best known authorities are CrossRef for journal articles, funders (etc) and DataCite, who specialise in citable identifiers for data. The registration process includes creating and adding a metadata record to the PID, the record is then indexed and can then be used for searching for the objects. The terms of these metadata records are carefully controlled to use specified and standardised vocabularies to describe the objects (one current initiative in chemistry in this area is described here[1]).

Read the rest of this entry »

References

  1. R.M. Hanson, D. Jeannerat, M. Archibald, I.J. Bruno, S.J. Chalk, A.N. Davies, R.J. Lancashire, J. Lang, and H.S. Rzepa, "IUPAC specification for the FAIR management of spectroscopic data in chemistry (IUPAC FAIRSpec) – guiding principles", Pure and Applied Chemistry, vol. 94, pp. 623-636, 2022. http://dx.doi.org/10.1515/pac-2021-2009

Determining absolute configuration: Cylindricine.

February 1st, 2023

Nature has produced most natural molecules as chiral objects, which means the molecule can come in two enantiomeric forms, each being the mirror image of the other. When a natural product is synthesised in a laboratory, a chiral synthesis means just one form is made, and then is compared with the natural product to see if it matches. Just such a process was following in the recent synthesis of cylindricine, a marine alkaloid[1] featured on the ACS molecule-of-the-week site. The authors noted that the absolute configuration of cylindricine as isolated naturally had remained unassigned, and as it happens one way of measuring the properties of the individual enantiomer – its optical rotation – had not been determined. So in part, the purpose of this synthesis was to determine the absolute configuration of this molecule. Here I explore this process.

Read the rest of this entry »

References

  1. M. Piccichè, A. Pinto, R. Griera, J. Bosch, and M. Amat, "Total Synthesis of (−)-Cylindricine H", Organic Letters, vol. 24, pp. 5356-5360, 2022. http://dx.doi.org/10.1021/acs.orglett.2c02004