Archive for the ‘crystal_structure_mining’ Category

The shortest known CF…HO hydrogen bond.

Sunday, March 24th, 2019

There is a predilection amongst chemists for collecting records; one common theme is the length of particular bonds, either the shortest or the longest. A particularly baffling type of bond is that between the very electronegative F atom and an acid hydrogen atom such as that in OH. Thus short C-N…HO hydrogen bonds are extremely common, as are C-O…HO. But F atoms in C-F bonds are largely thought to be inert to hydrogen bonding, as indicated by the use of fluorine in many pharmaceuticals as inert isosteres.[1] Here I do an up-to-date search of the CSD crystal structure database, which is now on the verge of accumulating 1 million entries, to see if any strong C-F…HO hydrogen bonding may have been recently discovered.



  1. S. Purser, P.R. Moore, S. Swallow, and V. Gouverneur, "Fluorine in medicinal chemistry", Chem. Soc. Rev., vol. 37, pp. 320-330, 2008.

How FAIR are the data associated with the 2017 Molecules-of-the-Year?

Wednesday, March 7th, 2018

C&EN has again run a vote for the 2017 Molecules of the year. Here I take a look not just at these molecules, but at how FAIR (Findable, Accessible, Interoperable and Reusable) the data associated with these molecules actually is.


FAIR data ⇌ Raw data.

Thursday, December 7th, 2017

FAIR data is increasingly accepted as a description of what research data should aspire to; Findable, Accessible, Inter-operable and Re-usable, with Context added by rich metadata (and also that it should be Open). But there are two sides to data, one of which is the raw data emerging from say an instrument or software simulations and the other in which some kind of model is applied to produce semi- or even fully processed/interpreted data. Here I illustrate a new example of how both kinds of data can be made to co-exist.


Elongating an N-B single bond is much easier than stretching a C-C single bond.

Tuesday, October 24th, 2017

An N-B single bond is iso-electronic to a C-C single bond, as per below. So here is a simple question: what form does the distribution of the lengths of these two bonds take, as obtained from crystal structures? 


Dispersion “bonds” not involving hydrogen. A Cl…Cl candidate?

Thursday, June 29th, 2017

In the previous post, I noted the crystallographic detection of an unusually short non-bonded H…H contact of ~1.5Å, some 0.9Å shorter than twice the van der Waals radius of hydrogen (1.2Å, although some sources quote 1.1Å which would make the contraction ~0.7Å). This was attributed to dispersion attractions accumulating in the rest of the molecule. I asked myself what the potential might be for other elements to reveal significantly contracted non-bonded distances as a result of dispersive attractions.


Chemistry rich diagrams: do crystal structures carry spin information? Iron-di-imine complexes.

Sunday, June 18th, 2017

The iron complex shown below forms the basis for many catalysts.[1] With iron, the catalytic behaviour very much depends on the spin-state of the molecule, which for the below can be either high (hextet) or medium (quartet) spin, with a possibility also of a low spin (doublet) state. Here I explore whether structural information in crystal structures can reflect such spin states.



  1. M.P. Shaver, L.E.N. Allan, H.S. Rzepa, and V.C. Gibson, "Correlation of Metal Spin State with Catalytic Reactivity: Polymerizations Mediated by α-Diimine–Iron Complexes", Angewandte Chemie International Edition, vol. 45, pp. 1241-1244, 2006.

Tautomeric polymorphism.

Thursday, June 1st, 2017

Conformational polymorphism occurs when a compound crystallises in two polymorphs differing only in the relative orientations of flexible groups (e.g. Ritonavir). At the Beilstein conference, Ian Bruno mentioned another type;  tautomeric polymorphism, where a compound can crystallise in two forms differing in the position of acidic protons. Here I explore three such examples.


CH⋅⋅⋅π Interactions between methyl and carbonyl groups in proteins: a small molecule check.

Monday, May 29th, 2017

Derek Lowe highlights a recent article[1] postulating CH⋅⋅⋅π interactions in proteins. Here I report a quick check using the small molecule crystal structure database (CSD).



  1. F.A. Perras, D. Marion, J. Boisbouvier, D.L. Bryce, and M.J. Plevin, "Observation of CH⋅⋅⋅π Interactions between Methyl and Carbonyl Groups in Proteins", Angewandte Chemie International Edition, vol. 56, pp. 7564-7567, 2017.

How does carbon dioxide coordinate to a metal?

Saturday, May 6th, 2017

Mention carbon dioxide (CO2) to most chemists and its properties as a metal ligand are not the first aspect that springs to mind. Here thought I might take a look at how it might act as such.


The challenges in curating research data: one case study.

Friday, April 28th, 2017

Research data (and its management) is rapidly emerging as a focal point for the development of research dissemination practices. An important aspect of ensuring that such data remains fit for purpose is identifying what curation activities need to be associated with it. Here I revisit one particular case study associated with the molecular structure of a product identified from a photolysis reaction[1] and the curation of the crystallographic data associated with this study.



  1. Y. Legrand, A. van der Lee, and M. Barboiu, "Single-Crystal X-ray Structure of 1,3-Dimethylcyclobutadiene by Confinement in a Crystalline Matrix", Science, vol. 329, pp. 299-302, 2010.