Posts Tagged ‘Michael Dewar’

Why diphenyl peroxide does not exist.

Monday, April 29th, 2013

A few posts back, I explored the “benzidine rearrangement” of diphenyl hydrazine. This reaction requires diprotonation to proceed readily, but we then discovered that replacing one NH by an O as in N,O-diphenyl hydroxylamine required only monoprotonation to undergo an equivalent facile rearrangement. So replacing both NHs by O to form diphenyl peroxide (Ph-O-O-Ph) completes this homologous series. I had speculated that PhNHOPh might exist if all traces of catalytic acid were removed, but could the same be done to PhOOPh? Not if it continues the trend and requires no prior protonation at all!

(more…)

Aromaticity in the benzidine-like π-complex formed from PhNHOPh.

Saturday, January 19th, 2013

The transient π-complex formed during the “[5,5]” sigmatropic rearrangement of protonated N,O-diphenyl hydroxylamine can be (formally) represented as below, namely the interaction of a six-π-electron aromatic ring (the phenoxide anion 2) with a four-π-electron phenyl dication-anion pair 1. Can one analyse this interaction in terms of aromaticity?

(more…)

The π-complex in the benzidine rearrangement: a molecular orbital analysis.

Friday, January 18th, 2013

Michael Dewar[1] famously implicated a so-called π-complex in the benzidine rearrangement, back in the days when quantum mechanical calculations could not yet provide a quantitatively accurate reality check. Because this π-complex actually remains a relatively unusual species to encounter in day-to-day chemistry, I thought I would try to show in a simple way how it forms.

(more…)

References

  1. M. Dewar, and H. McNicoll, "Mechanism of the benzidine rearrangement", Tetrahedron Letters, vol. 1, pp. 22-23, 1959. http://dx.doi.org/10.1016/S0040-4039(01)82765-9

The Benzidine rearrangement. Computed kinetic isotope effects.

Friday, January 11th, 2013

Kinetic isotope effects have become something of a lost art when it comes to exploring reaction mechanisms. But in their heyday they were absolutely critical for establishing the mechanism of the benzidine rearrangement[1]. This classic mechanism proceeds via bisprotonation of diphenyl hydrazine, but what happens next was the crux. Does this species rearrange directly to the C-C coupled intermediate (a concerted [5,5] sigmatropic reaction) or does it instead form a π-complex, as famously first suggested by Michael Dewar[2] [via TS(NN] and only then in a second step [via TS(CC)] form the C-C bond? Here I explore the isotope effects measured and calculated for this exact system.

(more…)

References

  1. H.J. Shine, H. Zmuda, K.H. Park, H. Kwart, A.G. Horgan, and M. Brechbiel, "Benzidine rearrangements. 16. The use of heavy-atom kinetic isotope effects in solving the mechanism of the acid-catalyzed rearrangement of hydrazobenzene. The concerted pathway to benzidine and the nonconcerted pathway to diphenyline", J. Am. Chem. Soc., vol. 104, pp. 2501-2509, 1982. http://dx.doi.org/10.1021/ja00373a028
  2. M. Dewar, and H. McNicoll, "Mechanism of the benzidine rearrangement", Tetrahedron Letters, vol. 1, pp. 22-23, 1959. http://dx.doi.org/10.1016/S0040-4039(01)82765-9

Computers 1967-2011: a personal perspective. Part 1. 1967-1985.

Thursday, July 7th, 2011

Computers and I go back a while (44 years to be precise), and it struck me (with some horror) that I have been around them for ~62% of the modern computing era (Babbage notwithstanding, ~1940 is normally taken as the start of the modern computing era). So indulge me whilst I record this perspective from the viewpoint of the computers I have used over this 62% of the computing era. (more…)