Posts Tagged ‘search query’

Silyl cations?

Thursday, March 23rd, 2017

It is not only the non-classical norbornyl cation that has proved controversial in the past. A colleague mentioned at lunch (thanks Paul!) that tri-coordinate group 14 cations such as R3Si+ have also had an interesting history.[cite]10.1021/ja990389u[/cite] Here I take a brief look at some of these systems.


Stable “unstable” molecules: a crystallographic survey of cyclobutadienes and cyclo-octatetraenes.

Sunday, March 5th, 2017

Cyclobutadiene is one of those small iconic molecules, the transience and instability of which was explained theoretically long before it was actually detected in 1965.[cite]10.1021/ja01092a049[/cite] Given that instability, I was intrigued as to how many crystal structures might have been reported for this ring system, along with the rather more stable congener cyclo-octatetraene. Here is what I found.


Molecules of the year? Pnictogen chains and 16 coordinate Cs.

Monday, December 19th, 2016

I am completing my survey of the vote for molecule of the year candidates, which this year seems focused on chemical records of one type or another.


Molecule of the year? “CrN123”, a molecule with three different types of Cr-N bond.

Friday, December 16th, 2016

Here is a third candidate for the C&EN “molecule of the year” vote. This one was shortlisted because it is the first example of a metal-nitrogen complex exhibiting single, double and triple bonds from different nitrogens to the same metal[cite]10.1039/c5sc04608d[/cite] (XUZLUB has a 3D display available at DOI: 10.5517/CC1JYY6M). Since no calculation of its molecular properties was reported, I annotate some here.


Long C=C bonds.

Thursday, December 1st, 2016

Following on from a search for long C-C bonds, here is the same repeated for C=C double bonds.


Long C-C bonds.

Wednesday, November 30th, 2016

In an earlier post, I searched for small C-C-C angles, finding one example that was also accompanied by an apparently exceptionally long C-C bond (2.18Å). But this arose from highly unusual bonding giving rise not to a single bond order but one closer to one half! How long can a “normal” (i.e single) C-C bond get, a question which has long fascinated chemists.


Exploring the electrophilic directing influence of heteroaromatic rings using crystal structure data mining.

Tuesday, June 21st, 2016

This is a follow-up to the post on exploring the directing influence of (electron donating) substituents on benzene[cite]10.1021/acs.jchemed.5b00346[/cite] with the focus on heteroaromatic rings such indoles, pyrroles and group 16 analogues (furans, thiophenes etc).


A wider look at π-complex metal-alkene (and alkyne) compounds.

Monday, June 13th, 2016

Previously, I looked at the historic origins of the so-called π-complex theory of metal-alkene complexes. Here I follow this up with some data mining of the crystal structure database for such structures.


The mechanism of silylether deprotection using a tetra-alkyl ammonium fluoride.

Wednesday, May 25th, 2016

The substitution of a nucleofuge (a good leaving group) by a nucleophile at a carbon centre occurs with inversion of configuration at the carbon, the mechanism being known by the term SN2 (a story I have also told in this post). Such displacement at silicon famously proceeds by a quite different mechanism, which I here quantify with some calculations.


What is the approach trajectory of enhanced (super?) nucleophiles towards a carbonyl group?

Wednesday, May 11th, 2016

I have previously commented on the Bürgi–Dunitz angle, this being the preferred approach trajectory of a nucleophile towards the electrophilic carbon of a carbonyl group. Some special types of nucleophile such as hydrazines (R2N-NR2) are supposed to have enhanced reactivity[cite]10.1016/S0040-4020(01)93101-1[/cite] due to what might be described as buttressing of adjacent lone pairs. Here I focus in on how this might manifest by performing searches of the Cambridge structural database for intermolecular (non-bonded) interactions between X-Y nucleophiles (X,Y= N,O,S) and carbonyl compounds OC(NM)2.