Posts Tagged ‘Isomerism’

Organocatalytic cyclopropanation of an enal: (computational) assignment of absolute configurations.

Saturday, September 1st, 2018
No Gravatar

I am exploring the fascinating diverse facets of a recently published laboratory experiment for undergraduate students.[1] Previously I looked at a possible mechanistic route for the reaction between an enal (a conjugated aldehyde-alkene) and benzyl chloride catalysed by base and a chiral amine, followed by the use of NMR coupling constants to assign relative stereochemistries. Here I take a look at some chiroptical techniques which can be used to assign absolute stereochemistries (configurations).

(more…)

References

  1. M. Meazza, A. Kowalczuk, S. Watkins, S. Holland, T.A. Logothetis, and R. Rios, "Organocatalytic Cyclopropanation of (E)-Dec-2-enal: Synthesis, Spectral Analysis and Mechanistic Understanding", Journal of Chemical Education, vol. 95, pp. 1832-1839, 2018. http://dx.doi.org/10.1021/acs.jchemed.7b00566

Tetrahedral carbon and cyclohexane.

Wednesday, August 22nd, 2018
No Gravatar

Following the general recognition of carbon as being tetrahedrally tetravalent in 1869 (Paterno) and 1874 (Van’t Hoff and Le Bell), an early seminal exploitation of this to the conformation of cyclohexane was by Hermann Sachse in 1890.[1] This was verified when the Braggs in 1913[2], followed by an oft-cited article by Mohr in 1918,[3] established the crystal structure of diamond as comprising repeating rings in the chair conformation. So by 1926, you might imagine that the shape (or conformation as we would now call it) of cyclohexane would be well-known. No quite so for everyone!

(more…)

References

  1. H. Sachse, "Ueber die geometrischen Isomerien der Hexamethylenderivate", Berichte der deutschen chemischen Gesellschaft, vol. 23, pp. 1363-1370, 1890. http://dx.doi.org/10.1002/cber.189002301216
  2. W.H. Bragg, and W.L. Bragg, "The Structure of the Diamond", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 89, pp. 277-291, 1913. http://dx.doi.org/10.1098/rspa.1913.0084
  3. E. Mohr, "Die Baeyersche Spannungstheorie und die Struktur des Diamanten", Journal f�r Praktische Chemie, vol. 98, pp. 315-353, 1918. http://dx.doi.org/10.1002/prac.19180980123

Tautomeric polymorphism.

Thursday, June 1st, 2017
No Gravatar

Conformational polymorphism occurs when a compound crystallises in two polymorphs differing only in the relative orientations of flexible groups (e.g. Ritonavir). At the Beilstein conference, Ian Bruno mentioned another type;  tautomeric polymorphism, where a compound can crystallise in two forms differing in the position of acidic protons. Here I explore three such examples.

(more…)

The conformation of enols: revealed and explained.

Thursday, April 6th, 2017
No Gravatar

Enols are simple compounds with an OH group as a substituent on a C=C double bond and with a very distinct conformational preference for the OH group. Here I take a look at this preference as revealed by crystal structures, with the theoretical explanation.

(more…)

Bond stretch isomerism. Did this idea first surface 100 years ago?

Tuesday, February 9th, 2016
No Gravatar

The phenomenon of bond stretch isomerism, two isomers of a compound differing predominantly in just one bond length, is one of those chemical concepts that wax and occasionally wane.[1] Here I explore such isomerism for the elements Ge, Sn and Pb.

(more…)

References

  1. J.A. Labinger, "Bond-stretch isomerism: a case study of a quiet controversy", Comptes Rendus Chimie, vol. 5, pp. 235-244, 2002. http://dx.doi.org/10.1016/S1631-0748(02)01380-2