Posts Tagged ‘Conformational isomerism’

Organocatalytic cyclopropanation of an enal: (computational) assignment of absolute configurations.

Saturday, September 1st, 2018

I am exploring the fascinating diverse facets of a recently published laboratory experiment for undergraduate students.[1] Previously I looked at a possible mechanistic route for the reaction between an enal (a conjugated aldehyde-alkene) and benzyl chloride catalysed by base and a chiral amine, followed by the use of NMR coupling constants to assign relative stereochemistries. Here I take a look at some chiroptical techniques which can be used to assign absolute stereochemistries (configurations).

(more…)

References

  1. M. Meazza, A. Kowalczuk, S. Watkins, S. Holland, T.A. Logothetis, and R. Rios, "Organocatalytic Cyclopropanation of (E)-Dec-2-enal: Synthesis, Spectral Analysis and Mechanistic Understanding", Journal of Chemical Education, vol. 95, pp. 1832-1839, 2018. http://dx.doi.org/10.1021/acs.jchemed.7b00566

Tautomeric polymorphism.

Thursday, June 1st, 2017

Conformational polymorphism occurs when a compound crystallises in two polymorphs differing only in the relative orientations of flexible groups (e.g. Ritonavir).[1] At the Beilstein conference, Ian Bruno mentioned another type;  tautomeric polymorphism, where a compound can crystallise in two forms differing in the position of acidic protons. Here I explore three such examples.

(more…)

References

  1. G.J.O. Beran, I.J. Sugden, C. Greenwell, D.H. Bowskill, C.C. Pantelides, and C.S. Adjiman, "How many more polymorphs of ROY remain undiscovered", Chemical Science, vol. 13, pp. 1288-1297, 2022. http://dx.doi.org/10.1039/D1SC06074K

The conformation of enols: revealed and explained.

Thursday, April 6th, 2017

Enols are simple compounds with an OH group as a substituent on a C=C double bond and with a very distinct conformational preference for the OH group. Here I take a look at this preference as revealed by crystal structures, with the theoretical explanation.

(more…)