Tying different knots in a molecular strand.

The title derives from an article[1] which was shortlisted for the annual c&en molecule of the year 2020 awards (and which I occasionally cover here). In fact this year’s overall theme is certainly large molecules, the one exception being a smaller molecule with a quadruple bond to boron, a theme I have already covered here.

To illustrate a main theme of many of these award-winning molecules, I often look to showing either a computed property (such as each of the localised orbitals for the quadruple bond to boron) or the actual 3D coordinates. In this example, they were there in the supporting information and are presented here as rotatable 3D models without any further transformation. The authors of the article encourage the reader to spot the different types of knot that can be tied in the three molecules reported, but to show how difficult it can be to get a good perception of this, I illustrate the standard journal presentation of a static 2D projection of the 3D structure. It can be a nightmare to try to find the optimum such projection for larger molecules and so often they are reduced to much simpler schematics to get the message across. Well, below you can see three (unoptimized) projections, but you can covert them to 3D form by clicking on the scheme and then select your own projection.

(52)-1-CuLu

(52)-L1-CuLu

(52)-1-CuLu

Synthesized molecules with knots and the like have been around since about 1967, but they have certainly come on a pace since then. It would be interesting to see if any have properties unique to knots that have seen spectacular uses!

References

  1. D.A. Leigh, F. Schaufelberger, L. Pirvu, J.H. Stenlid, D.P. August, and J. Segard, "Tying different knots in a molecular strand", Nature, vol. 584, pp. 562-568, 2020. http://dx.doi.org/10.1038/s41586-020-2614-0
Henry Rzepa

Henry Rzepa is Emeritus Professor of Computational Chemistry at Imperial College London.

Recent Posts

Internet Archeology: reviving a 2001 article published in the Internet Journal of Chemistry.

In the mid to late 1990s as the Web developed, it was becoming more obvious…

1 month ago

Detecting anomeric effects in tetrahedral carbon bearing four oxygen substituents.

I have written a few times about the so-called "anomeric effect", which relates to stereoelectronic…

1 month ago

Data Citation – a snapshot of the chemical landscape.

The recent release of the DataCite Data Citation corpus, which has the stated aim of…

2 months ago

Mechanistic templates computed for the Grubbs alkene-metathesis reaction.

Following on from my template exploration of the Wilkinson hydrogenation catalyst, I now repeat this…

2 months ago

3D Molecular model visualisation: 3 Million atoms +

In the late 1980s, as I recollected here the equipment needed for real time molecular…

3 months ago

The Macintosh computer at 40.

On 24th January 1984, the Macintosh computer was released, as all the media are informing…

3 months ago