Organocatalytic cyclopropanation of an enal: (computational) product stereochemical assignments.

In the previous post, I investigated the mechanism of cyclopropanation of an enal using a benzylic chloride using a quantum chemistry based procedure. Here I take a look at the NMR spectra of the resulting cyclopropane products, with an evaluation of the original stereochemical assignments.[1]

Three products were identified, 4a-c (aryl=2,4-dinitro) with a fourth diastereomer undetected. The relative stereochemistries were assigned[1] on the basis of NMR coupling constants, using the empirical Karplus or Bothner-By relationships. Here I calculate the NMR couplings at the B3LYP+GD3BJ/Def2-TZVPP/SCRF=chloroform level for a comparison, using a methyl group rather than the full n-heptyl one shown above.

System, Data DOI

10.14469/hpc/4650

Gibbs Energy J1(a)-2(b) J1(a)-3(c)

J3(c)-2(b)

4a (1S,2R,3R) expt (R-prolinol) 4.9 9.0 7.5
4a calc -910.861653 4.6 9.9 8.3
-910.860816 4.4 10.7 7.9
-910.859908 4.9 10.9 7.7
-910.860299 5.2 8.1 8.1
4b (1R,2R,3R) expt 9.6 5.3 6.7
4b calc -910.859549 10.8 5.1 7.7
4c (1S,2S,3R) expt 5.4 5.4 9.9
4c calc -910.859820 4.2 5.5 10.4
4d (1R,2S,3R) expt n/a
4d calc -910.855965 10.3 9.4 9.6

The variation resulting from rotations about the substituents (the o-nitro and the carbaldehyde) as seen for 4a can be up to ~2 Hz. This could if needed be averaged by weighting with the Boltzmann populations. Even without this procedure one can see that for the three diastereomers where values were measured, the calculated couplings agree to 1 Hz or better. This provides confirmation of the original assignments. This quantum-based method can be used in cases where simple formulaic relationships may apply less well.


For four conformations, rotating the carbaldehyde and the o-nitro groups, as in red above.

References

  1. M. Meazza, A. Kowalczuk, S. Watkins, S. Holland, T.A. Logothetis, and R. Rios, "Organocatalytic Cyclopropanation of (E)-Dec-2-enal: Synthesis, Spectral Analysis and Mechanistic Understanding", Journal of Chemical Education, vol. 95, pp. 1832-1839, 2018. http://dx.doi.org/10.1021/acs.jchemed.7b00566
Henry Rzepa

Henry Rzepa is Emeritus Professor of Computational Chemistry at Imperial College London.

Recent Posts

Internet Archeology: reviving a 2001 article published in the Internet Journal of Chemistry.

In the mid to late 1990s as the Web developed, it was becoming more obvious…

1 month ago

Detecting anomeric effects in tetrahedral carbon bearing four oxygen substituents.

I have written a few times about the so-called "anomeric effect", which relates to stereoelectronic…

1 month ago

Data Citation – a snapshot of the chemical landscape.

The recent release of the DataCite Data Citation corpus, which has the stated aim of…

2 months ago

Mechanistic templates computed for the Grubbs alkene-metathesis reaction.

Following on from my template exploration of the Wilkinson hydrogenation catalyst, I now repeat this…

2 months ago

3D Molecular model visualisation: 3 Million atoms +

In the late 1980s, as I recollected here the equipment needed for real time molecular…

3 months ago

The Macintosh computer at 40.

On 24th January 1984, the Macintosh computer was released, as all the media are informing…

3 months ago