Archive for the ‘Hypervalency’ Category

Octet expansion and hypervalence in dimethylidyne-λ6-sulfane.

Tuesday, November 28th, 2017

I started this story by looking at octet expansion and hypervalence in non-polar hypercoordinate species such as S(-CH3)6, then moved on to S(=CH2)3. Finally now its the turn of S(≡CH)2.

(more…)

Hypervalence and octet-expansion in trimethylene-λ6-sulfane and related species.

Monday, November 27th, 2017

Previously: “Non-polar” species such as SeMe6, SMe6, ClMe3, ClMe5 all revealed interesting properties for the Se-C, S-C or Cl-C “single” bonds. The latter two examples in particular hinted at internal structures for these single bonds, as manifested by two ELF basins for some of the bonds. Here I take a look at the related molecule where a formal double bond between carbon and the central sulfur atom replacing the single-bond might also hint at octet expansions and hypervalence.

(more…)

Hypervalence and octet-expansion in sulfur hexafluoride.

Monday, November 20th, 2017

Following on from discussing octet expansion in species such as SeMe6, ClMe3 and ClMe5, I felt impelled to return to SF6, often used as an icon for hypervalence.

(more…)

VSEPR Theory: Octet-busting or not with trimethyl chlorine, ClMe3.

Sunday, November 12th, 2017

A few years back, I took a look at the valence-shell electron pair repulsion approach to the geometry of chlorine trifluoride, ClF3 using so-called ELF basins to locate centroids for both the covalent F-Cl bond electrons and the chlorine lone-pair electrons. Whereas the original VSEPR theory talks about five “electron pairs” totalling an octet-busting ten electrons surrounding chlorine, the electron density-based ELF approach located only ~6.8e surrounding the central chlorine and no “octet-busting”. The remaining electrons occupied fluorine lone pairs rather than the shared Cl-F regions. Here I take a look at ClMe3, as induced by the analysis of SeMe6.

(more…)

Hypervalence revisited. The odd case of hexamethyl selenium.

Tuesday, November 7th, 2017

One thread that runs through this blog is that of hypervalency. It was therefore nice to come across a recent review of the concept[cite]10.1039/c5sc02076j[/cite] which revisits the topic, and where a helpful summary is given of the evolving meanings over time of the term hypervalent. The key phrase “it soon became clear that the two principles of the 2-centre-2-electron bond and the octet rule were sometimes in conflict” succinctly summarises the issue. Two molecules that are discussed in this review caught my eye, CLi6 and SeMe6. The former is stated as “anomalous in terms of the Lewis model“, but as I have shown in an earlier post, the carbon is in fact not anomalous in a Lewis sense because of a large degree of Li-Li bonding. When this is taken into account, the Lewis model of the carbon becomes more “normal”. Here I take a look at the other cited molecule, SeMe6.

(more…)

First, hexacoordinate carbon – now pentacoordinate oxygen?

Saturday, March 25th, 2017

The previous post demonstrated the simple iso-electronic progression from six-coordinate carbon to five coordinate nitrogen. Here, a further progression to oxygen is investigated computationally.

(more…)

First, hexacoordinate carbon – now pentacoordinate nitrogen?

Saturday, March 25th, 2017

A few years back I followed a train of thought here which ended with hexacoordinate carbon, then a hypothesis rather than a demonstrated reality. That reality was recently confirmed via a crystal structure, DOI:10.5517/CCDC.CSD.CC1M71QM[cite]10.1002/anie.201608795[/cite]. Here is a similar proposal for penta-coordinate nitrogen.

(more…)

Real hypervalency in a small molecule.

Sunday, February 21st, 2016

Hypervalency is defined as a molecule that contains one or more main group elements formally bearing more than eight  electrons in their  valence shell. One example of a molecule so characterised was CLi6[cite]10.1038/355432a0[/cite] where the description "“carbon can expand its octet of electrons to form this relatively stable molecule“ was used. Yet, in this latter case, the octet expansion is in fact an illusion, as indeed are many examples that are cited. The octet shell remains resolutely un-expanded. Here I will explore the tiny molecule CH3F2- where two extra electrons have been added to fluoromethane.

(more…)

VSEPR Theory: A closer look at trifluorothionitrile, NSF3.

Saturday, January 16th, 2016

The post on applying VSEPR ("valence shell electron pair repulsion") theory to the geometry of ClF3 has proved perennially popular. So here is a follow-up on another little molecue, F3SN. As the name implies, it is often represented with an S≡N bond. Here I take a look at the conventional analysis.

(more…)

A connected world (journals and blogs): The benzene dication.

Thursday, April 10th, 2014

Science is rarely about a totally new observation or rationalisation, it is much more about making connections between known facts, and perhaps using these connections to extrapolate to new areas (building on the shoulders of giants, etc). So here I chart one example of such connectivity over a period of six years.

(more…)