Archive for the ‘Hypervalency’ Category

The nature of the C≡S triple bond: part 3.

Sunday, December 6th, 2009

In the previous two posts, a strategy for tuning the nature of the CS bond in the molecule HO-S≡C-H was developed, based largely on the lone pair of electrons identified on the carbon atom. By replacing the HO group by one with greater σ-electron withdrawing propensity, the stereo-electronic effect between the O-S bond and the carbon lone pair was enhanced, and in the process, the SC bond was strengthened. It is time to do a control experiment in the other direction. Now, the HO-S group is replaced by a H2B-S group. The B-S bond, boron being very much less electronegative than oxygen, should be a very poor σ-acceptor. In addition, whereas oxygen was a π-electron donor (acting to strengthen the S=C region), boron is a π-acceptor, and will also act in the opposite direction. So now, this group should serve to weaken the S-C bond.

(more…)

The nature of the C≡S Triple bond: Part 2

Saturday, December 5th, 2009

In my first post on this theme, an ELF (Electron localization function) analysis of the bonding in the molecule HO-S≡C-H (DOI: 10.1002/anie.200903969) was presented. This analysis identified a lone pair of electrons localized on the carbon (integrating in fact to almost exactly 2.0) in addition to electrons in the CC region. This picture seems to indicate that the triple bond splits into two well defined regions of electron density (synaptic basins). In a comment to this post, I also pointed out that an NBO analysis showed a large interaction energy between the carbon lone pair and the S-O σ* orbital, characteristic of anomeric effects (in eg sugars). This latter observation gives us a handle on possibly tweaking the effect. Thus if the S-O σ* orbital can be made a better electron acceptor, then its interaction with the lone pair could be enhanced.

(more…)

The nature of the C≡S triple bond

Tuesday, December 1st, 2009

Steve Bachrach has just blogged on a recent article (DOI: 10.1002/anie.200903969) claiming the isolation of a compound with a C≡S triple bond;

(more…)

Multi-centre bonding in the Grignard Reagent

Tuesday, December 1st, 2009

The Grignard reaction is encountered early on in most chemistry courses, and most labs include the preparation of this reagent, typically by the following reaction:

(more…)

Hypervalency: a reality check

Monday, October 5th, 2009

We have seen in the series of posts on the topic of hypervalency how the first row main group elements such as Be, B, C and N can sustain apparent hypercoordination and arguably hypervalency. The latter is defined not so much by expanding the total valence shell of electrons surrounding the hypervalent atom beyond eight, but in having more than four well defined bonds to it, as quantified by  AIM and ELF analysis. The previous post made the suggestion of how a compound involving hypervalent boron could also sustain a genuine  bond to the rare gas helium. It is surely time to seek evidence that this type of bonding can be sustained in reality. Fortunately, a crystal structure of a reasonably analogous compound IS available (DOI: 10.1016/0022-328X(94)05089-T).

(more…)

Uncompressed Monovalent Helium

Saturday, October 3rd, 2009

Quite a few threads have developed in this series of posts, and following each leads in rather different directions. In this previous post the comment was made that coordinating a carbon dication to the face of a cyclopentadienyl anion resulted in a monocation which had a remarkably high proton affinity. So it is a simple progression to ask whether these systems may in turn harbour a large affinity for binding not so much a H+ as the next homologue He2+?

(more…)

Pentavalent nitrogen and boron

Saturday, October 3rd, 2009

The previous posts have seen how a molecule containing a hypervalent carbon atom can be designed by making a series of logical chemical connections. Another logical step is to investigate whether the adjacent atoms in the periodic table may exhibit similar effects (C2+ ≡ B+ ≡ N3+ ≡ Be ≡ O4+). So here are reported some results (B3LYP/6-311G(d,p) ) for boron, beryllium and nitrogen, for the general tetramethyl substituted system shown below

(more…)

Full circle with carbon hypervalencies

Friday, October 2nd, 2009

The previous post talked about making links or connections. And part of the purpose for presenting this chemistry as a blog is to expose how these connections are made, or or less as it happens in real time (and not the chronologically sanitized version of discovery that most research papers are). So each post represents an evolution or mutation from the previous one. To recapitulate, we have seen how the idea of cyclopentadienyl anion as a ligand for a dipositive carbon atom has evolved. Let us move in yet another direction; the cyclobutadienyl dianion.  This ligand has recently been shown to bind Mg2+ (DOI: 10.1002/ejic.200800066), so why not He2+? And picking up again the previous theme, we will then protonate the bound complex. The result now is a monocation, and it has the C4v-symmetric structure shown below (DOI: 10042/to-2438). This bears some resemblance to pyramidane, a neutral  C5H4 compound with hemispherical carbon reported in 2001 (DOI: 10.1021/jp011642r) which is also a stable minimum in the potential energy surface.

(more…)

It’s Hexa-coordinate carbon Spock – but not as we know it!

Friday, October 2nd, 2009

Science is about making connections. And these can often be made between the most unlikely concepts. Thus in the posts I have made about pentavalent carbon, one can identify a series of conceptual connections. The first, by Matthias Bickelhaupt and co, resulted in the suggestion of a possible frozen SN2 transition state. They used astatine, and this enabled a connection to be made between another good nucleophile/nucleofuge, cyclopentadienyl anion. This too seems to lead to a frozen Sn2 transition state. The cyclopentadienyl theme then asks whether this anion can coordinate a much simpler unit, a C2+ dication (rather than Bickelhaupt’s suggestion of a (NC)3C+ cation/radical) and indeed that complex is also frozen, again with 5-coordinate carbon, and this time with five equal C-C bonds. So here, the perhaps inevitable progression of ideas moves on to examining the properties of this complex, the outcome being a quite counter-intuitive suggestion which moves us into new territory.

(more…)

It’s penta-coordinate carbon Spock- but not as we know it!

Wednesday, September 30th, 2009

In the previous two posts, I noted the recent suggestion of how a stable frozen SN2 transition state might be made. This is characterised by a central carbon with five coordinated ligands. The original suggestion included two astatine atoms as ligands (X=At), but in my post I suggested an alternative which would have five carbon ligands instead (X=cyclopentadienyl anion).

(more…)