Henry Rzepa's Blog Chemistry with a twist

April 13, 2018

A record polarity for a neutral compound?

In several posts a year or so ago I considered various suggestions for the most polar neutral molecules, as measured by the dipole moment. A record had been claimed[1] for a synthesized molecule of ~14.1±0.7D. I pushed this to a calculated 21.7D for an admittedly hypothetical and unsynthesized molecule. Here I propose a new family of compounds which have the potential to extend the dipole moment for a formally neutral molecule up still further.

(more…)

References

  1. J. Wudarczyk, G. Papamokos, V. Margaritis, D. Schollmeyer, F. Hinkel, M. Baumgarten, G. Floudas, and K. Müllen, "Hexasubstituted Benzenes with Ultrastrong Dipole Moments", Angewandte Chemie International Edition, vol. 55, pp. 3220-3223, 2016. http://dx.doi.org/10.1002/anie.201508249

December 24, 2016

The dipole moments of highly polar molecules: glycine zwitterion.

The previous posts produced discussion about the dipole moments of highly polar molecules. Here to produce some reference points for further discussion I look at the dipole moment of glycine, the classic zwitterion (an internal ion-pair).

(more…)

December 21, 2016

Forking “The most polar neutral compound synthesized” into m-benzyne.

Filed under: Interesting chemistry — Tags: , , , , , — Henry Rzepa @ 7:52 am

A project fork is defined (in computing) as creating a distinct and separate strand from an existing (coding) project. Here I apply the principle to the polar azulene 4 explored in an earlier post, taking m-benzyne as a lower homologue of azulene as my starting point.

(more…)

June 10, 2015

Natural abundance kinetic isotope effects: mechanism of the Baeyer-Villiger reaction.

I have blogged before about the mechanism of this classical oxidation reaction. Here I further explore computed models, and whether they match the observed kinetic isotope effects (KIE) obtained using the natural-abundance method described in the previous post.

(more…)

Powered by WordPress