The Sn2 reaction: followed up.

An obvious issue to follow-up my last post on the (solvated) intrinisic reaction coordinate for the Sn2 reaction is how variation of the halogen (X) impacts upon the nature of the potential.

X=F X=Cl
X=Br X=I
X=F X=Cl
X=Br X=I

The change in slope of the gradient norm along the IRC is hardly noticeable for Y=Na, X=F, but increases up to X=I. The distance between the two halogens varies as 3.74, 4.68, 4.98, 5.40Å at the point where the gradients change character (all at the ωB97XD/6-311+G(d,p)/SCRF=methanol level). This nicely reinforces the explanation given before, that the dimensions of the box defined by the two halogens is too large for the small central CH3 to fit in snugly for X=Cl,Br and I, but is not an issue with the very much smaller box with X=F. One more variation; replacing CH3 with the slightly smaller NH3(+) results in the box contracting to 4.74Å (X=Br) and again the very characteristic behaviour.

I should end with a quick comment on the form of the potential energy surfaces. That for the last example above is typical and looks like as below. But this shape is not what many textbooks show. These indicate that as the halide (anion) approaches the (neutral) molecule, an initial ion-dipole complex is form as a minimum, before surmounting the barrier and forming a similar complex the other side. The diagram below (and all the others) show no sign of these minima. This is because all the systems are computed as neutral ion-pairs and a solvation correction has been applied to the potential. Under these conditions, the classical form of the potential found in text books does not pertain.


Digital repository entries
system Dspace Chempound Figshare
NH3(+), X=Br 10042/20313 a25daa67-d409-4d38-8d35-8a009f449bc9 10.6084/m9.figshare.95816
CH3, X=F 10042/20314 dfccf382-8c60-459c-8da0-c6efdd2b0931 10.6084/m9.figshare.95817
CH3, X=Cl 10042/20315 d5ab33c2a-9e92-49a0-b488-f0559bbc2061 10.6084/m9.figshare.95818
CH3, X=Br 10042/20316 5b1995f1-fef0-451b-a467-80a592081119
CH3, X=I 10042/20317 d9149e4e-466e-4358-9de5-67a47950eff1 10.6084/m9.figshare.95819

Henry Rzepa

Henry Rzepa is Emeritus Professor of Computational Chemistry at Imperial College London.

View Comments

Recent Posts

Internet Archeology: reviving a 2001 article published in the Internet Journal of Chemistry.

In the mid to late 1990s as the Web developed, it was becoming more obvious…

1 month ago

Detecting anomeric effects in tetrahedral carbon bearing four oxygen substituents.

I have written a few times about the so-called "anomeric effect", which relates to stereoelectronic…

1 month ago

Data Citation – a snapshot of the chemical landscape.

The recent release of the DataCite Data Citation corpus, which has the stated aim of…

2 months ago

Mechanistic templates computed for the Grubbs alkene-metathesis reaction.

Following on from my template exploration of the Wilkinson hydrogenation catalyst, I now repeat this…

2 months ago

3D Molecular model visualisation: 3 Million atoms +

In the late 1980s, as I recollected here the equipment needed for real time molecular…

3 months ago

The Macintosh computer at 40.

On 24th January 1984, the Macintosh computer was released, as all the media are informing…

3 months ago