Are close H…H contacts bonds? The dénouement!

I wrote earlier about the strangely close contact between two hydrogen atoms in cis-butene. The topology of the electron density showed characteristics of a bond, but is it a consensual union? The two hydrogens approach closer than their van der Waals radii would suggest is normal, so something is happening, but that something need not be what chemists might choose to call a “bond“. An NCI (non-covalent analysis) hinted that any stability due to the electron topologic characteristics of a bond (the BCP) might be more than offset by the repulsive nature of the adjacent ring critical point (RCP). Here I offer an alternative explanation for why the two hydrogens approach so closely.

One of four C-H NBO donor orbitals. Click for 3D

The empty C=C π* orbital. Click for 3D to show both orbitals superimposed.

We need to try to “concentrate” or “focus” the effect into the bonds of the molecule, and a good way of doing this is to calculate the NBO (natural bond orbitals). The first we focus on is localised onto one (of four) C-H bonds of the methyl group; the other is the anti bonding π* orbital of the alkene. NBO theory allows us to calculate how these two orbitals perturb each other, in the sense of the occupied orbital donating to the empty orbital. This energy is known as E(2), and for any of the four (equivalent) interactions above, it is computed at 5.17 kcal/mol. If you look closely at the orbitals, the C-H bond is leaning away from the centre, but so is the π* acceptor orbital (that is the nature of anti bonding orbitals). These characteristics improve the overlap of the orbitals, and hence tend to increase the value of E(2).

What about an alternative conformation of cis-butene in which the close contact of the H…H atoms is removed by rotation? Well, the C-H NBOs now rotate in, but the anti bonding π* orbital still tilts out. The overlap between them is no longer quite so good, and indeed the E(2) energy decreases to 4.43 kcal/mol.

Donor C-H bond in rotated isomer of cis-butene. Click for  3D

NBO C=C p* orbital in rotated isomer of cis-butene. Click for  3D

How many more orbitals should be considered? Well, the NBO technique in effect concentrates these effects into a relatively small number of orbitals (those separated by the smallest energy gap). We can also add in the four interactions between the bonding π orbital and the anti-bonding C-H* NBO. The totals for the first conformation come to 34.08 and for the second 30.44.

So we can conclude by observing that cis-butene makes a sacrifice for its greater good. Rotating the methyl groups means that the overlap of four C-H bonds with the alkene is optimised, but an undesired side effect is to induce two hydrogens to get close to each other. They would not normally be happy doing so, but the gain from the first effect is greater than the loss from the second. Whilst they may be close, chemists would prefer not to call the H-H approach a bond, even though the topology of the electron density might say it is.

By the way, this is my 150th post. I had little idea when I started that I might reach this milestone.

Henry Rzepa

Henry Rzepa is Emeritus Professor of Computational Chemistry at Imperial College London.

View Comments

Recent Posts

Internet Archeology: reviving a 2001 article published in the Internet Journal of Chemistry.

In the mid to late 1990s as the Web developed, it was becoming more obvious…

1 month ago

Detecting anomeric effects in tetrahedral carbon bearing four oxygen substituents.

I have written a few times about the so-called "anomeric effect", which relates to stereoelectronic…

1 month ago

Data Citation – a snapshot of the chemical landscape.

The recent release of the DataCite Data Citation corpus, which has the stated aim of…

2 months ago

Mechanistic templates computed for the Grubbs alkene-metathesis reaction.

Following on from my template exploration of the Wilkinson hydrogenation catalyst, I now repeat this…

2 months ago

3D Molecular model visualisation: 3 Million atoms +

In the late 1980s, as I recollected here the equipment needed for real time molecular…

3 months ago

The Macintosh computer at 40.

On 24th January 1984, the Macintosh computer was released, as all the media are informing…

3 months ago