Oxane oxide: a tautomer of hydrogen peroxide.

If H3N+-O is viable compared with its tautomer H2N-OH when carrying water bridges, then why not try H2O+-O vs HO-OH?

There are no examples to be found in crystal structures! The solvated structure of H2O+-O is modified directly from that of H3N+-Oand the computed (ωB97XD/6-311++G(d,p)/SCRF=water) structure[1] is shown below. Noteworthy is that the hydrogen bonds at the O+ end are far stronger than those to at the O end.

The corresponding hydrated hydrogen peroxide is 16.3 kcal/mol lower in free energy; this compares favourably with the value for water itself and suggests that oxane oxide might also be capable of isolation inside a suitable hydrogen bond stabilising cavity.

References

  1. Henry S Rzepa., "H20O11", 2016. http://dx.doi.org/10.14469/ch/192005
Henry Rzepa

Henry Rzepa is Emeritus Professor of Computational Chemistry at Imperial College London.

Recent Posts

Detecting anomeric effects in tetrahedral boron bearing four oxygen substituents.

In an earlier post, I discussed a phenomenon known as the "anomeric effect" exhibited by…

3 days ago

Internet Archeology: reviving a 2001 article published in the Internet Journal of Chemistry.

In the mid to late 1990s as the Web developed, it was becoming more obvious…

1 month ago

Detecting anomeric effects in tetrahedral carbon bearing four oxygen substituents.

I have written a few times about the so-called "anomeric effect", which relates to stereoelectronic…

2 months ago

Data Citation – a snapshot of the chemical landscape.

The recent release of the DataCite Data Citation corpus, which has the stated aim of…

2 months ago

Mechanistic templates computed for the Grubbs alkene-metathesis reaction.

Following on from my template exploration of the Wilkinson hydrogenation catalyst, I now repeat this…

2 months ago

3D Molecular model visualisation: 3 Million atoms +

In the late 1980s, as I recollected here the equipment needed for real time molecular…

3 months ago