Posts Tagged ‘free energy’

A better model for the mechanism of Lithal (LAH) reduction of cinnamaldehyde?

Friday, April 10th, 2015
No Gravatar

Previously on this blog: modelling the reduction of cinnamaldehyde using one molecule of lithal shows easy reduction of the carbonyl but a high barrier at the next stage, the reduction of the double bond. Here is a quantum energetic exploration of what might happen when a second LAH is added to the brew (the usual ωB97XD/6-311+G(d,p)/SCRF=diethyl ether).

(more…)

Mechanism of the Lithal (LAH) reduction of cinnamaldehyde.

Wednesday, April 1st, 2015
No Gravatar

The reduction of cinnamaldehyde by lithium aluminium hydride (LAH) was reported in a classic series of experiments[1],[2],[3] dating from 1947-8. The reaction was first introduced into the organic chemistry laboratories here at Imperial College decades ago, vanished for a short period, and has recently been reintroduced again. The experiment is really simple in concept; add LAH to cinnamaldehyde and you get just reduction of the carbonyl group; invert the order of addition and you additionally get reduction of the double bond. Here I investigate the mechanism of these reductions using computation (ωB97XD/6-311+G(d,p)/SCRF=diethyl ether).

(more…)

References

  1. R.F. Nystrom, and W.G. Brown, "Reduction of Organic Compounds by Lithium Aluminum Hydride. I. Aldehydes, Ketones, Esters, Acid Chlorides and Acid Anhydrides", J. Am. Chem. Soc., vol. 69, pp. 1197-1199, 1947. http://dx.doi.org/10.1021/ja01197a060
  2. R.F. Nystrom, and W.G. Brown, "Reduction of Organic Compounds by Lithium Aluminum Hydride. II. Carboxylic Acids", J. Am. Chem. Soc., vol. 69, pp. 2548-2549, 1947. http://dx.doi.org/10.1021/ja01202a082
  3. F.A. Hochstein, and W.G. Brown, "Addition of Lithium Aluminum Hydride to Double Bonds", J. Am. Chem. Soc., vol. 70, pp. 3484-3486, 1948. http://dx.doi.org/10.1021/ja01190a082

A 5-high straight flush of water-ionised acids?

Tuesday, March 17th, 2015
No Gravatar

I do not play poker, and so I had to look up a 5-4-3-2-1(A), which Wikipedia informs me is a 5-high straight flush, also apparently known as a steel wheel. In previous posts  I have suggested acids which can be ionised by (probably) 5, 4, 3 or  1 discrete water molecules in the gas phase; now to try to track down  a candidate for ionisation by the required two water molecules to form that straight flush.

(more…)

Chiroptical spectroscopy of the natural product Steganone.

Tuesday, February 10th, 2015
No Gravatar

Steganone is an unusual natural product, known for about 40 years now. The assignment of its absolute configurations makes for an interesting, on occasion rather confusing, and perhaps not entirely atypical story. I will start with the modern accepted stereochemical structure of this molecule, which comes in the form of two separately isolable atropisomers.
steganone
The first reported synthesis of this system in 1977 was racemic, and no stereochemistry is shown in the article (structure 2).[1] Three years later an “Asymmetric total synthesis of (-)steganone and revision of its absolute configuration” shows how the then accepted configuration (structure 1 in this article) needs to be revised to the enantiomer shown as structure 12 in the article[2] and matching the above representation. The system has continued to attract interest ever since[3],[4],[5],[6], not least because of the presence of axial chirality in the form of atropisomerism. Thus early on it was shown that the alternative atropisomer, the (aS,R,R) configuration initially emerges out of several syntheses, and has to be converted to the (aR,R,R) configuration by heating[3]. One could easily be fooled by such isomerism!

(more…)

References

  1. D. Becker, L.R. Hughes, and R.A. Raphael, "Total synthesis of the antileukaemic lignan (�)-steganacin", J. Chem. Soc., Perkin Trans. 1, pp. 1674, 1977. http://dx.doi.org/10.1039/P19770001674
  2. J. Robin, O. Gringore, and E. Brown, "Asymmetric total synthesis of the antileukaemic lignan precursor (-)steganone and revision of its absolute configuration", Tetrahedron Letters, vol. 21, pp. 2709-2712, 1980. http://dx.doi.org/10.1016/S0040-4039(00)78586-8
  3. E.R. Larson, and R.A. Raphael, "Synthesis of (?)-steganone", J. Chem. Soc., Perkin Trans. 1, pp. 521, 1982. http://dx.doi.org/10.1039/P19820000521
  4. A. Bradley, W.B. Motherwell, and F. Ujjainwalla, "A concise approach towards the synthesis of steganone analogues", Chem. Commun., pp. 917-918, 1999. http://dx.doi.org/10.1039/A900743A
  5. M. Uemura, A. Daimon, and Y. Hayashi, "An asymmetric synthesis of an axially chiral biaryl via an (arene)chromium complex: formal synthesis of (?)-steganone", Journal of the Chemical Society, Chemical Communications, pp. 1943, 1995. http://dx.doi.org/10.1039/C39950001943
  6. B. Yalcouye, S. Choppin, A. Panossian, F.R. Leroux, and F. Colobert, "A Concise Atroposelective Formal Synthesis of (-)-Steganone", European Journal of Organic Chemistry, vol. 2014, pp. 6285-6294, 2014. http://dx.doi.org/10.1002/ejoc.201402761

Ribulose-1,5-bisphosphate + carbon dioxide → carbon fixation!

Sunday, April 20th, 2014
No Gravatar

Ribulose-1,5-bisphosphate reacts with carbon dioxide to produce 3-keto-2-carboxyarabinitol 1,5-bisphosphate as the first step in the biochemical process of carbon fixation. It needs an enzyme to do this (Ribulose-1,5-bisphosphate carboxylase/oxygenase, or RuBisCO) and lots of ATP (adenosine triphosphate, produced by photosynthesis). Here I ask what the nature of the uncatalysed transition state is, and hence the task that might be facing the catalyst in reducing the activation barrier to that of a facile thermal reaction. I present my process in the order it was done.

(more…)

Enantioselective epoxidation of alkenes using the Shi Fructose-based catalyst. An undergraduate experiment.

Tuesday, April 15th, 2014
No Gravatar

The journal of chemical education can be a fertile source of ideas for undergraduate student experiments. Take this procedure for asymmetric epoxidation of an alkene.[1] When I first spotted it, I thought not only would it be interesting to do in the lab, but could be extended by incorporating some modern computational aspects as well. 

(more…)

References

  1. A. Burke, P. Dillon, K. Martin, and T.W. Hanks, "Catalytic Asymmetric Epoxidation Using a Fructose-Derived Catalyst", J. Chem. Educ., vol. 77, pp. 271, 2000. http://dx.doi.org/10.1021/ed077p271

What is the best way of folding a straight chain alkane?

Sunday, April 6th, 2014
No Gravatar

In the previous post, I showed how modelling of unbranched alkenes depended on dispersion forces. When these are included, a bent (single-hairpin) form of C58H118 becomes lower in free energy than the fully extended linear form. Here I try to optimise these dispersion forces by adding further folds to see what happens.

(more…)

The mechanism of diazo coupling: more hidden mechanistic intermediates.

Saturday, March 8th, 2014
No Gravatar

The diazo-coupling reaction dates back to the 1850s (and a close association with Imperial College via the first professor of chemistry there, August von Hofmann) and its mechanism was much studied in the heyday of physical organic chemistry.[1] Nick Greeves, purveyor of the excellent ChemTube3D site, contacted me about the transition state (I have commented previously on this aspect of aromatic electrophilic substitution). ChemTube3D recruits undergraduates to add new entries; Blue Jenkins is one such adding a section on dyes.

(more…)

References

  1. S.B. Hanna, C. Jermini, H. Loewenschuss, and H. Zollinger, "Indices of transition state symmetry in proton-transfer reactions. Kinetic isotope effects and Bronested's .beta. in base-catalyzed diazo-coupling reactions", J. Am. Chem. Soc., vol. 96, pp. 7222-7228, 1974. http://dx.doi.org/10.1021/ja00830a009

Molecule-sized pixels.

Sunday, August 11th, 2013
No Gravatar

The ultimate reduction in size for an engineer is to a single molecule. It’s been done for a car; now it has been reported for the pixel (picture-element).[1]

(more…)

References

  1. J.E. Kwon, S. Park, and S.Y. Park, "Realizing Molecular Pixel System for Full-Color Fluorescence Reproduction: RGB-Emitting Molecular Mixture Free from Energy Transfer Crosstalk", J. Am. Chem. Soc., vol. 135, pp. 11239-11246, 2013. http://dx.doi.org/10.1021/ja404256s

Mechanism of the Boekelheide rearrangement

Wednesday, June 26th, 2013
No Gravatar

A reader asked me about the mechanism of the reaction of 2-picoline N-oxide with acetic anhydride to give 2-acetoxymethylpyridine (the Boekelheide Rearrangement[1]). He wrote ” I don’t understand why the system should prefer to go via fragmentation-recombination (… the evidence being that oxygen labelling shows scrambling) when there is an easy concerted pathway available (… a [3,3]sigmatropic shift). Furthermore, is it possible for two pathways to co-exist?” Here is how computation might enlighten us.

(more…)

References

  1. A. Massaro, A. Mordini, A. Mingardi, J. Klein, and D. Andreotti, "A New Sequential Intramolecular Cyclization Based on the Boekelheide Rearrangement", European Journal of Organic Chemistry, vol. 2011, pp. 271-279, 2010. http://dx.doi.org/10.1002/ejoc.201000936