Posts Tagged ‘energy profile’

A computed mechanistic pathway for the formation of an amide from an acid and an amine in non-polar solution.

Wednesday, November 12th, 2014

In London, one has the pleasures of attending occasional one day meetings at the Burlington House, home of the Royal Society of Chemistry. On November 5th this year, there was an excellent meeting on the topic of Challenges in Catalysisand you can see the speakers and (some of) their slides here. One talk on the topic of Direct amide formation – the issues, the art, the industrial application by Dave Jackson caught my interest. He asked whether an amide could be formed directly from a carboxylic acid and an amine without the intervention of an explicit catalyst. The answer involved noting that the carboxylic acid was itself a catalyst in the process, and a full mechanistic exploration of this aspect can be found in an article published in collaboration with Andy Whiting’s group at Durham.[1] My after-thoughts in the pub centered around the recollection that I had written some blog posts about the reaction between hydroxylamine and propanone. Might there be any similarity between the two mechanisms?

(more…)

References

  1. H. Charville, D.A. Jackson, G. Hodges, A. Whiting, and M.R. Wilson, "The Uncatalyzed Direct Amide Formation Reaction - Mechanism Studies and the Key Role of Carboxylic Acid H-Bonding", European Journal of Organic Chemistry, vol. 2011, pp. 5981-5990, 2011. http://dx.doi.org/10.1002/ejoc.201100714

Patterns of behaviour: serendipity in action for enantiomerisation of F-S-S-Cl

Thursday, September 19th, 2013

Paul Schleyer sent me an email about a pattern he had spotted, between my post on F3SSF and some work he and Michael Mauksch had done 13 years ago with the intriguing title “Demonstration of Chiral Enantiomerization in a Four-Atom Molecule“.[1] Let me explain the connection, but also to follow-up further on what I discovered in that post and how a new connection evolved.FSSF3-gen

(more…)

References

  1. P.V.R. Schleyer, and M. Mauksch, "Demonstration of Chiral Enantiomerization in a Four‐Atom Molecule ", Angewandte Chemie International Edition, 2000. http://doi.org/d8g2nw

A conflation of concepts: Conformation and pericyclic.

Thursday, January 10th, 2013

This is an interesting result I got when studying the [1,4] sigmatropic rearrangement of heptamethylbicyclo-[3.1.0]hexenyl cations. It fits into the last lecture of a series on pericyclic mechanisms, and just before the first lecture on conformational analysis. This is how they join.

(more…)

Secrets of a university tutor. An exercise in mechanistic logic: second dénouement.

Monday, October 29th, 2012

Following on from our first mechanistic reality check, we now need to verify how product A might arise in the mechanism shown below, starting from B.

(more…)