Posts Tagged ‘energy’

WATOC 2017 report.

Tuesday, August 29th, 2017
No Gravatar

The triennial conference is this year located in Munich. With 1500 participants and six parallel sessions, this report can give only a flavour of proceedings.

(more…)

Chemistry rich diagrams: do crystal structures carry spin information? Iron-di-imine complexes.

Sunday, June 18th, 2017
No Gravatar

The iron complex shown below forms the basis for many catalysts.[1] With iron, the catalytic behaviour very much depends on the spin-state of the molecule, which for the below can be either high (hextet) or medium (quartet) spin, with a possibility also of a low spin (doublet) state. Here I explore whether structural information in crystal structures can reflect such spin states.

(more…)

References

  1. M.P. Shaver, L.E.N. Allan, H.S. Rzepa, and V.C. Gibson, "Correlation of Metal Spin State with Catalytic Reactivity: Polymerizations Mediated by α-Diimine–Iron Complexes", Angewandte Chemie International Edition, vol. 45, pp. 1241-1244, 2006. http://dx.doi.org/10.1002/anie.200502985

π-Facial hydrogen bonds to alkenes (revisited): how close can an acidic hydrogen approach?

Saturday, April 15th, 2017
No Gravatar

Back in the early 1990s, we first discovered the delights of searching crystal structures for unusual bonding features.[1] One of the first cases was a search for hydrogen bonds formed to the π-faces of alkenes and alkynes. In those days the CSD database of crystal structures was a lot smaller (<80,000 structures; it’s now ten times larger) and the search software less powerful. So here is an update. 

(more…)

References

  1. H.S. Rzepa, M.H. Smith, and M.L. Webb, "A crystallographic AM1 and PM3 SCF-MO investigation of strong OH ⋯π-alkene and alkyne hydrogen bonding interactions", J. Chem. Soc., Perkin Trans. 2, pp. 703-707, 1994. http://dx.doi.org/10.1039/P29940000703

Reaction coordinates vs Dynamic trajectories as illustrated by an example reaction mechanism.

Monday, March 20th, 2017
No Gravatar

The example a few posts back of how methane might invert its configuration by transposing two hydrogen atoms illustrated the reaction mechanism by locating a transition state and following it down in energy using an intrinsic reaction coordinate (IRC). Here I explore an alternative method based instead on computing a molecular dynamics trajectory (MD).

(more…)

Long C=C bonds.

Thursday, December 1st, 2016
No Gravatar

Following on from a search for long C-C bonds, here is the same repeated for C=C double bonds.

(more…)

Molecule orbitals as indicators of reactivity: bromoallene.

Thursday, September 1st, 2016
No Gravatar

Bromoallene is a pretty simple molecule, with two non-equivalent double bonds. How might it react with an electrophile, say dimethyldioxirane (DMDO) to form an epoxide?[1] Here I explore the difference between two different and very simple approaches to predicting its reactivity. bromoallene

(more…)

References

  1. D. Christopher Braddock, A. Mahtey, H.S. Rzepa, and A.J.P. White, "Stable bromoallene oxides", Chem. Commun., vol. 52, pp. 11219-11222, 2016. http://dx.doi.org/10.1039/C6CC06395K

An alternative mechanism for nucleophilic substitution at silicon using a tetra-alkyl ammonium fluoride.

Friday, May 27th, 2016
No Gravatar

In the previous post, I explored the mechanism for nucleophilic substitution at a silicon centre proceeding via retention of configuration involving a Berry-like pseudorotation. Here I probe an alternative route involving inversion of configuration at the Si centre. Both stereochemical modes are known to occur, depending on the leaving group, solvent and other factors.[1],[2],[3]

(more…)

References

  1. L. Wozniak, M. Cypryk, J. Chojnowski, and G. Lanneau, "Optically active silyl esters of phosphorus. II. Stereochemistry of reactions with nucleophiles", Tetrahedron, vol. 45, pp. 4403-4414, 1989. http://dx.doi.org/10.1016/S0040-4020(01)89077-3
  2. L.H. Sommer, and H. Fujimoto, "Stereochemistry of asymmetric silicon. X. Solvent and reagent effects on stereochemistry crossover in alkoxy-alkoxy exchange reactions at silicon centers", Journal of the American Chemical Society, vol. 90, pp. 982-987, 1968. http://dx.doi.org/10.1021/ja01006a024
  3. D.N. Roark, and L.H. Sommer, "Dramatic stereochemistry crossover to retention of configuration with angle-strained asymmetric silicon", Journal of the American Chemical Society, vol. 95, pp. 969-971, 1973. http://dx.doi.org/10.1021/ja00784a081

The mechanism of silylether deprotection using a tetra-alkyl ammonium fluoride.

Wednesday, May 25th, 2016
No Gravatar

The substitution of a nucleofuge (a good leaving group) by a nucleophile at a carbon centre occurs with inversion of configuration at the carbon, the mechanism being known by the term SN2 (a story I have also told in this post). Such displacement at silicon famously proceeds by a quite different mechanism, which I here quantify with some calculations.

(more…)

Autoionization of hydrogen fluoride.

Sunday, April 24th, 2016
No Gravatar

The autoionization of water involves two molecules transfering a proton to give hydronium hydroxide, a process for which the free energy of reaction is well known. Here I ask what might happen with the next element along in the periodic table, F.

(more…)

Deuteronium deuteroxide. The why of pD 7.435.

Friday, April 22nd, 2016
No Gravatar

Earlier, I constructed a possible model of hydronium hydroxide, or H3O+.OH– One way of assessing the quality of the model is to calculate the free energy difference between it and two normal water molecules and compare the result to the measured difference. Here I apply a further test of the model using isotopes.

(more…)