Archive for the ‘Historical’ Category

Bond stretch isomerism. Did this idea first surface 100 years ago?

Tuesday, February 9th, 2016
No Gravatar

The phenomenon of bond stretch isomerism, two isomers of a compound differing predominantly in just one bond length, is one of those chemical concepts that wax and occasionally wane.[1] Here I explore such isomerism for the elements Ge, Sn and Pb.

(more…)

References

  1. J.A. Labinger, "Bond-stretch isomerism: a case study of a quiet controversy", Comptes Rendus Chimie, vol. 5, pp. 235-244, 2002. http://dx.doi.org/10.1016/S1631-0748(02)01380-2

I’ve started so I’ll finish. The ionisation mechanism and kinetic isotope effects for 1,3-dimethylindolin-2 one

Thursday, January 7th, 2016
No Gravatar

This is the third and final study deriving from my Ph.D.[1]. The first two topics dealt with the mechanism of heteroaromatic electrophilic attack using either a diazonium cation or a proton as electrophile, followed by either proton abstraction or carbon dioxide loss from the resulting Wheland intermediate. This final study inverts this sequence by starting with the proton abstraction from an indolinone by a base to create/aromatize to a indole-2-enolate intermediate, which only then is followed by electrophilic attack (by iodine).  Here I explore what light quantum chemical modelling might cast on the mechanism.

(more…)

References

  1. B.C. Challis, and H.S. Rzepa, "Heteroaromatic hydrogen exchange reactions. Part VIII. The ionisation of 1,3-dimethylindolin-2-one", J. Chem. Soc., Perkin Trans. 2, pp. 1822, 1975. http://dx.doi.org/10.1039/P29750001822

I’ve started so I’ll finish. Mechanism and kinetic isotope effects for protiodecarboxylation of indoles.

Saturday, January 2nd, 2016
No Gravatar

Another mechanistic study we started in 1972[1] is here 40+ years on subjected to quantum mechanical scrutiny.

(more…)

References

  1. B.C. Challis, and H.S. Rzepa, "Heteroaromatic hydrogen exchange reactions. Part 9. Acid catalysed decarboxylation of indole-3-carboxylic acids", Journal of the Chemical Society, Perkin Transactions 2, pp. 281, 1977. http://dx.doi.org/10.1039/P29770000281

I’ve started so I’ll finish. The mechanism of diazo coupling to indoles – forty (three) years on!

Thursday, December 24th, 2015
No Gravatar

The BBC TV quiz series Mastermind was first broadcast in the UK in 1972, the same time I was starting to investigate the mechanism of diazocoupling to substituted indoles as part of my Ph.D. researches. The BBC program became known for the catch phrase I've started so I'll finish; here I will try to follow this precept with the project I started then. Indole diazocoupling In 1972, one measured the rates of chemical reactions to gain insights into the transition state kinetic model. To obtain more data, we used isotopes such as 2H or 3H, together with substituents such as R-t-butyl to modify the potential energy surfaces of the reactions by inducing steric effects.[1],[2] We found that the kinetics for this reaction were actually complex (in part because of pH dependence) involving a Wheland intermediate (the formation of which is shown with red curly arrows above) followed by the collapse of this intermediate to the diazo-coupled product (blue arrows). Coupling to 2-methyl indole (R=X=H, R'=Me), 2-t-butyl indole (R=H, R'=t-butyl) and 4-methyl-2-t-butyl indole (R=Me, R'=t-butyl) revealed that the kinetic isotope effects induced by replacing H by D or T were "not apparent" (i.e. close to 1), the inference being that the rate constant k1 for those systems was slower than k2; the formation of the Wheland intermediate was rate determining (the rds) for the reaction. But with 2-methyl-4,6-di-t-butyl indole (R=t-butyl, R'=Me) this changed and a deuterium isotope effect of ~7 was observed. The rate determining proton removal from the Wheland intermediate k2 was now slower than k1. With 2,4,6-tri-t-butyl indole, we ended by noting that the reaction become almost too slow to observe and furthermore was accompanied by loss of a t-butyl cation as well as a proton. At this point we attempted to infer some transition state models consistent with these observations. Note that we had relatively little data with which to derive our 3D models (one needs to define a geometry using 3N-6 variables, along with its relative energy and force constants). The text and diagram of our attempt is shown below. TS1 The main points of this argument were;

(more…)

References

  1. B.C. Challis, and H.S. Rzepa, "The mechanism of diazo-coupling to indoles and the effect of steric hindrance on the rate-limiting step", J. Chem. Soc., Perkin Trans. 2, pp. 1209, 1975. http://dx.doi.org/10.1039/P29750001209
  2. Rzepa, Henry S.., "Hydrogen transfer reactions of Indoles", 1974. http://dx.doi.org/10.5281/zenodo.18777

Pierre and Marie Curie.

Friday, October 23rd, 2015
No Gravatar

I have previously shown the grave of  William Perkin, a great british organic chemist. On a recent visit to  Paris, I went to see the crypt in the Panthéon, the great french secular necropolis. What a contrast to Perkin! 

(more…)

Impressions of China 2: The colour of porcelain.

Wednesday, October 14th, 2015
No Gravatar

In Jingdezhen an Imperial Kiln was built in 1369 to produce porcelain that was “white as jade, thin as paper, bright as a mirror and tuneful as a bell”. It’s the colours of the glazes that caught my eye, achieved by a combination of oxidative and reductive firing in the kiln, coupled with exquisite control of the temperature.

(more…)

The chemical Web at 22 and where it might go.

Wednesday, August 19th, 2015
No Gravatar

This post is prompted by the appearance of a retrospective special issue of C&E news, with what appears to be its very own Website: internet.cenmag.org. It contains articles and interviews with many interesting people, along with several variations on the historical (albeit rather USA-centric) perspectives and a time-line covers many of the key innovations (again, from a USA-perspective). Some subjects are covered in greater depth, including computational chemistry. The periodic table too gets coverage, but surprisingly that is not of Mark Winter’s WebElements, which carries the impressive 1993-2015 continuous timeline (hence 22 in the title!).  

(more…)

The structure of naphthalene: 1890-1925, and a modern twist.

Saturday, July 18th, 2015
No Gravatar

This is a little historical essay into the electronic structure of naphthalene, presented as key dates (and also collects comments made which were appended to other posts).

(more…)

R-X≡X-R: G. N. Lewis’ 100 year old idea.

Friday, May 22nd, 2015
No Gravatar

As I have noted elsewhere, Gilbert N. Lewis wrote a famous paper entitled “the atom and the molecule“, the centenary of which is coming up.[1] In a short and rarely commented upon remark, he speculates about the shared electron pair structure of acetylene,  R-X≡X-R (R=H, X=C). It could, he suggests, take up three forms. H-C:::C-H and two more which I show as he drew them. The first of these would now be called a bis-carbene and the second a biradical.

(more…)

References

  1. G.N. Lewis, "THE ATOM AND THE MOLECULE.", Journal of the American Chemical Society, vol. 38, pp. 762-785, 1916. http://dx.doi.org/10.1021/ja02261a002

Fine-tuning a (hydrogen) bond into symmetry.

Friday, January 23rd, 2015
No Gravatar

Sometimes you come across a bond in chemistry that just shouts at you. This happened to me in 1989[1] with the molecule shown below. Here is its story and, 26 years later, how I responded.

(more…)

References

  1. P. Camilleri, C.A. Marby, B. Odell, H.S. Rzepa, R.N. Sheppard, J.J.P. Stewart, and D.J. Williams, "X-Ray crystallographic and NMR evidence for a uniquely strong OH ? N hydrogen bond in the solid state and solution", Journal of the Chemical Society, Chemical Communications, pp. 1722, 1989. http://dx.doi.org/10.1039/C39890001722