Posts Tagged ‘Derek Lowe’

Silicon drug analogues.

Sunday, January 14th, 2018

I don’t normally write about the pharmaceutical industry, but I was intrigued by several posts by Derek Lowe (who does cover this area) on the topic of creating new drugs by deuterating existing ones. Thus he covered the first deuterated drug receiving FDA approval last year, having first reviewed the concept back in 2009. So when someone introduced me to sila-haloperidol, I checked to see if Derek had written about it. Apparently not, so here are a few details.


CH⋅⋅⋅π Interactions between methyl and carbonyl groups in proteins: a small molecule check.

Monday, May 29th, 2017

Derek Lowe highlights a recent article[1] postulating CH⋅⋅⋅π interactions in proteins. Here I report a quick check using the small molecule crystal structure database (CSD).



  1. F.A. Perras, D. Marion, J. Boisbouvier, D.L. Bryce, and M.J. Plevin, "Observation of CH⋅⋅⋅π Interactions between Methyl and Carbonyl Groups in Proteins", Angewandte Chemie International Edition, vol. 56, pp. 7564-7567, 2017.

Ritonavir: a look at a famous example of conformational polymorphism.

Monday, January 2nd, 2017

Here is an inside peek at another one of Derek Lowe’s 250 milestones in chemistry, the polymorphism of Ritonavir.[1] The story in a nutshell concerns one of a pharma company’s worst nightmares; a drug which has been successfully brought to market unexpectedly “changes” after a few years on market to a less effective form (or to use the drug term, formulation). This can happen via a phenomenon known as polymorphism, where the crystalline structure of a molecule can have more than one form. In this case, form I was formulated into soluble tablets for oral intake. During later manufacturing, a new less-soluble form appeared and “within weeks this new polymorph began to appear throughout both the bulk drug and formulation areas[1]



  1. J. Bauer, S. Spanton, R. Henry, J. Quick, W. Dziki, W. Porter, and J. Morris, "Array", Pharmaceutical Research, vol. 18, pp. 859-866, 2001.

The “hydrogen bond”; its early history.

Saturday, December 31st, 2016

My holiday reading has been Derek Lowe’s excellent Chemistry Book setting out 250 milestones in chemistry, organised by year. An entry for 1920 entitled hydrogen bonding seemed worth exploring in more detail here.


How to stop (some) acetals hydrolysing.

Thursday, November 12th, 2015

Derek Lowe has a recent post entitled "Another Funny-Looking Structure Comes Through". He cites a recent medchem article[1] in which the following acetal sub-structure appears in a promising drug candidate (blue component below). His point is that orally taken drugs have to survive acid (green below) encountered in the stomach, and acetals are famously sensitive to hydrolysis (red below). But if X=NH2, compound "G-5555" is apparently stable to acids.[1] So I pose the question here; why?



  1. C.O. Ndubaku, J.J. Crawford, J. Drobnick, I. Aliagas, D. Campbell, P. Dong, L.M. Dornan, S. Duron, J. Epler, L. Gazzard, C.E. Heise, K.P. Hoeflich, D. Jakubiak, H. La, W. Lee, B. Lin, J.P. Lyssikatos, J. Maksimoska, R. Marmorstein, L.J. Murray, T. O’Brien, A. Oh, S. Ramaswamy, W. Wang, X. Zhao, Y. Zhong, E. Blackwood, and J. Rudolph, "Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pKa Polar Moiety", ACS Medicinal Chemistry Letters, vol. 6, pp. 1241-1246, 2015.

A convincing example of the need for data repositories. FAIR Data.

Thursday, January 15th, 2015

Derek Lowe in his In the Pipeline blog is famed for spotting unusual claims in the literature and subjecting them to analysis. This one is entitled Odd Structures, Subjected to Powerful Computations. He looks at this image below, and finds the structures represented there might be a mistake, based on his considerable experience of these kinds of molecules. I expect he had a gut feeling within seconds of seeing the diagram.