Posts Tagged ‘chemical’

Data-round-tripping: wherein the future?

Tuesday, December 7th, 2010

Moving (chemical) data around in a manner which allows its (automated) use in whichever context it finds itself must be a holy grail for all scientists and chemists. I posted earlier on the fragile nature of molecular diagrams making the journey between the editing program used to create them (say ChemDraw) and the Word processor used to place them into a context (say Microsoft office), via an intermediate storage area known as the clipboard. The round trip between the Macintosh (OS X) versions of these programs had been broken a little while, but it is now fixed! A small victory. This blog reports what happened when such a Mac-created Word document is sent to someone using Microsoft Windows as an OS (or vice versa).


The oldest reaction mechanism: updated!

Tuesday, September 14th, 2010

Unravelling reaction mechanisms is thought to be a 20th century phenomenon, coincident more or less with the development of electronic theories of chemistry. Hence electronic arrow pushing as a term. But here I argue that the true origin of this immensely powerful technique in chemistry goes back to the 19th century. In 1890, Henry Armstrong proposed what amounts to close to the modern mechanism for the process we now know as aromatic electrophilic substitution [1]. Beyond doubt, he invented what is now known as the Wheland Intermediate (about 50 years before Wheland wrote about it, and hence I argue here it should really be called the Armstrong/Wheland intermediate). This is illustrated (in modern style) along the top row of the diagram.

The mechanism of aromatic electrophilic substitution



  1. "Proceedings of the Chemical Society, Vol. 6, No. 85", Proceedings of the Chemical Society (London), vol. 6, pp. 95, 1890.

On the importance of Digital repositories in Chemistry

Friday, April 3rd, 2009

The preceeding blog entries contain stories about chemical behaviour. If you have clicked on the diagrams, you may even have gotten a Jmol view of the relevant molecules popping up. But if you are truly curious, you may even have the urge to acquire the relevant 3D information about the molecule, and play with it yourself. Even after 15 years of the  (chemical) Web, this can be distressingly difficult to achieve (or can it be that it is only myself who wishes to view molecules in their  native mode?).  Thus the standard mechanism is to seek out on journal pages that disarming little entry entitled  supporting information and to hope that you might find something useful embedded there.  Embedded is the correct description, since the information is often found within the confines of an Acrobat file, and has to be extracted from there.  Indeed, that is what  I had to resort to in order to write one of the blog entries below. I ground my teeth whilst doing so. 
So is there a better way? We think so! The  digital repository. If you click on this you should see the entry directly. What can you do there? Well, if you have suitable programs, you can download eg a Checkpoint file of the calculation that created the molecule model and re-activate it there. Or you can download just the CML file for viewing in any CML-compliant program (such as e.g. Jmol). Or you can check up on the InCHi string or the InChI Key of the molecule.