Henry Rzepa's Blog Chemistry with a twist

April 7, 2021

Dimethyl ketal hydrolysis catalysed by hydroxide and hydronium ions

Filed under: reaction mechanism — Henry Rzepa @ 12:07 pm

In the preceding post, I looked at a computed mechanism for the hydrolysis of a ketal by water. Of course, pure water consists of three potential catalysts, water itself or [H2O], and the products of autoionisation, [OH] and [H3O+]. The latter are in much smaller concentration, equivalent to a penalty of ~11.9 kcal/mol on any free energy barrier. Here I take a look at these ion-catalysed routes to see if that penalty can be overcome.


April 1, 2021

A computational mechanism for the aqueous hydrolysis of a ketal to a ketone and alcohol.

Filed under: reaction mechanism — Henry Rzepa @ 11:25 am

The previous post was about an insecticide and made a point that the persistence of both insecticides and herbicides is an important aspect of their environmental properties. Water hydrolysis will degrade them, a typical residency time being in the order of a few days. I noted in passing a dioxepin-based herbicide[1] which contains a ketal motif and which in water can hydrolise to a ketone and alcohol. The reverse (acid catalysed) formation of a ketal is a staple of the taught organic chemistry curriculum. Here as a prelude to looking at the hydrolysis of that dioxepin, I take a look at a possible computational mechanism for the hydrolysis of 2,2-dimethoxypropane using pure water, without the help of acid or base.



  1. P. Camilleri, D. Munro, K. Weaver, D.J. Williams, H.S. Rzepa, and A.M.Z. Slawin, "Isoxazolinyldioxepins. Part 1. Structure–reactivity studies of the hydrolysis of oxazolinyldioxepin derivatives", J. Chem. Soc., Perkin Trans. 2, pp. 1265-1269, 1989. http://dx.doi.org/10.1039/P29890001265

Powered by WordPress