Archive for November 7th, 2020

An interesting aromatic molecule found in Titan’s atmosphere: Cyclopropenylidene

Saturday, November 7th, 2020

Cyclopropenylidene must be the smallest molecule to be aromatic due to π-electrons, with just three carbon atoms and two hydrogen atoms. It has now been detected in the atmosphere of Titan, one of Saturn’s moons[1] and joining benzene, another aromatic molecule and the protonated version of cyclopropenylidene, C3H3+ there.

(more…)

References

  1. C.A. Nixon, A.E. Thelen, M.A. Cordiner, Z. Kisiel, S.B. Charnley, E.M. Molter, J. Serigano, P.G.J. Irwin, N.A. Teanby, and Y. Kuan, "Detection of Cyclopropenylidene on Titan with ALMA", The Astronomical Journal, vol. 160, pp. 205, 2020. http://dx.doi.org/10.3847/1538-3881/abb679

A new example of a quadruple bond from carbon – to Fe.

Saturday, November 7th, 2020

Way back in 2010, I was writing about an experience I had just had during an organic chemistry tutorial, which morphed into speculation as to whether a carbon atom might sustain a quadruple bond to nitrogen. A decade on, and possibly approaching 100 articles by many authors on the topic, quadruple bonds to carbon continue to fascinate. Now an article as appeared[1] repeating this speculation for a carbon to iron quadruple bond, in the very simple species C⩸Fe(CO)3 (see also a Rh-B equivalent[2]). This is particularly exciting because of the very real prospect of synthesising this species and perchance getting a crystal structure (something not possible with most of the other quadruply bonded carbon systems studied to date).

(more…)

References

  1. A.J. Kalita, S.S. Rohman, C. Kashyap, S.S. Ullah, and A.K. Guha, "Transition metal carbon quadruple bond: viability through single electron transmutation", Physical Chemistry Chemical Physics, vol. 22, pp. 24178-24180, 2020. http://dx.doi.org/10.1039/d0cp03436c
  2. L.F. Cheung, T. Chen, G.S. Kocheril, W. Chen, J. Czekner, and L. Wang, "Observation of Four-Fold Boron–Metal Bonds in RhB(BO–) and RhB", The Journal of Physical Chemistry Letters, vol. 11, pp. 659-663, 2020. http://dx.doi.org/10.1021/acs.jpclett.9b03484