Archive for the ‘Curly arrows’ Category

Shared space (in science).

Friday, January 6th, 2012

I thought I would launch the 2012 edition of this blog by writing about shared space. If you have not come across it before, it is (to quote Wikipedia), “an urban design concept aimed at integrated use of public spaces.” The BBC here in the UK ran a feature on it recently, and prominent in examples of shared space in the UK was Exhibition Road. I note this here on the blog since it is about 100m from my office.

(more…)

The peroxidation of alkynes: things are not always what they seem.

Wednesday, November 16th, 2011

The epoxidation of an alkene to give an oxirane is taught in introductory organic chemistry. Formulating an analogous mechanism for such reaction of an alkyne sounds straightforward, but one gradually realises that it requires raiding knowledge from several other areas of (perhaps slightly more advanced) chemistry to achieve a joined up approach to the problem. I had indeed hinted in a previous post that the mechanism for oxidation of acetylene to ketene might be an interesting arrow pushing challenge to set a bright tutorial group, and it was that self-hint that has led me to here. I now explore how my “arrow pushing” intuition stands up to a computational examination.

(more…)

Secrets of a university tutor: (curly) arrow pushing

Thursday, October 28th, 2010

Curly arrows are something most students of chemistry meet fairly early on. They rapidly become hard-wired into the chemists brain. They are also uncontroversial! Or are they? Consider the following very simple scheme.

(more…)

Mechanistic Ménage à trois

Wednesday, November 18th, 2009

Curly arrow pushing is one of the essential tools of a mechanistic chemist. Many a published article will speculate about the arrow pushing in a mechanism, although it is becoming increasingly common for these speculations to be backed up by quantitative quantum mechanical and dynamical calculations. These have the potential of exposing the underlying choreography of the electronic dance (the order in which the steps take place). The basic grammar of describing that choreography tends to be the full-headed curly arrow for closed shell systems and its half-barbed equivalent for open shell systems. An effectively unstated and hence implicit rule for closed shell systems is that only one curly arrow is used per breaking or forming bond, i.e. electrons move around bonds in pairs. So consider the following reaction (inspired by a posting on  Steve Bachrach’s blog)

(more…)