Theoretical Methods in Chemistry Problem Class 2 : Autumn 2004

nicholas.harrison@imperial.ac.uk

- Knowledge of the derivatives of a well behaved function at a point is enough to define the function over all space !! through a polynomial expansion.
- The Maclaurin expansion about x=0 is;

$$f(x) = f(0) + \frac{df}{dx}\Big|_{x=0} x + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x=0} x^2 + \frac{1}{3!} \frac{d^3 f}{dx^3}\Big|_{x=0} x^3 + \dots$$

• The Taylor expansion about x=a is;

$$f(x) = f(a) + \frac{df}{dx}\Big|_{x=a}(x-a) + \frac{1}{2!}\frac{d^2f}{dx^2}\Big|_{x=a}(x-a)^2 + \frac{1}{3!}\frac{d^3f}{dx^3}\Big|_{x=a}(x-a)^3 + \dots$$

1. Make a Maclaurin expansion of e^x .

Note:

The exponential function is *defined* such that $\frac{de^x}{dx} = e^x$.

How many terms are required to compute e^2 to 3 decimal places, 4 d.p. and 5 d.p. ? Sketch e^x and these polynomial approximations to it.

Make a Taylor expansion about x=1, using this expansion how many terms are required to compute e^2 to 5 d.p. ?

2. The potential energy of interaction between the H-atoms in the hydrogen molecule can be approximated by the Morse form;

$$E(r) = D_e \left\{ 1 - e^{-\alpha(r-a)} \right\}^2$$

with, $D_e=4.79 \text{eV}$, a = 0.074 nm and $\alpha=19.3 \text{ nm}^{-1}$

Sketch this potential energy surface – mark D_e on your sketch, what role do a and α play ?

Calculate $\frac{dE}{dr}$ and find the equilibrium bond length of H₂.

What value does E(r) approach far from equilibrium ? what do you deduce from this about the binding energy of H_2 ?

- 3. Compute $\frac{d^2 E}{dr^2}$ make a Taylor expansion of E(r) about r=a and thus show that near equilibrium (r \approx a) the Morse potential is harmonic with force constant k = $m\omega^2 = 2D_e\alpha^2$. Add this harmonic approximation to your sketch.
- 4. The energy of the lowest vibrational mode of H₂ is approximately $\frac{1}{2}\hbar\omega$

Find the energy of the lowest vibrational mode and use it to estimate the dissociation energy of H_2 .

Note: The mass of a proton = 1.672×10^{-27} kg The electronic charge is: 1.602×10^{-19} C h-bar (h/2pi) is: 6.6×10^{-16} eVs

Filename:	PC2.doc
Directory:	
	$\label{eq:linear} $$ \Tess_mag\nh\Tess_mag\nb\Theoretical_Methods_04\Prob $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$
lem Classes	
Template:	C:\Documents and Settings\nmh\Application
Data\Microsoft\Te	emplates\Normal.dot
Title:	Theoretical Methods in Chemistry
Subject:	
Author:	Prof. Nicholas M Harrison
Keywords:	
Comments:	
Creation Date:	01/11/2004 14:38:00
Change Number:	2
Last Saved On:	01/11/2004 14:38:00
Last Saved By:	Prof. Nicholas M Harrison
Total Editing Time:	3 Minutes
Last Printed On:	03/11/2004 12:20:00
As of Last Complete	Printing
Number of Pages:	2
Number of Words	s: 287 (approx.)
Number of Chara	cters: 1,638 (approx.)