










->electrons in MOLE	CULES & SOLIDS:
Total Energy = (A)sin	gle-atom contributions + (B) many-atom effects
energy scales:	electron K. E. (A+B, uncertainty principle) +
	electron-ion Coulomb attraction (A+B)+
	electron-electron Coulomb repulsion (A+B)+
	ion-ion Coulomb repulsion (B)
1) e-i attraction VS i-i re	epulsion (bonding)
2) kinetic delocalis	sation of electrons throughout the solid (uncertainty principle) (B) VS
	on-electron coulomb repulsion is localise in their atomic shells) (A)

to understand alignment ->	kinetic delocalisation (uncertainty principle) + Pauli exclusion principle
ferromagnet: alignment of atomic	spin
3d shell of Fe: 5 up, 1 dn Co: 5 up, 2 dn Ni: 5 up, 3 dn	Fe↓ Fe│ Fe↓ 1up,5dn 5up,1dn 1up,5dn
	-> no electron can delocalise: unfavoured configuration
antiferromagnet: antialignment	of atomic spin
3d shell of Cr : 4 up	Mn [†] Mn [†] Mn [†]
Mn: 5 up	5up 5up 5up
	-> no electron can delocalise: unfavoured configuration
paramagnet: no coupling be	tween atomic spins

SIE and transition metal ferro- and antiferro-magnets
effect of SIE on orbitals: interaction of electron with itself causes the charge distribution n(r) to be more spread out, resulting in a non physical metallisation (electron delocalisation) of the system
* s,p metals: LDA works well since the SIE is small
* d metals: LDA still gives qualitatively good answers because of their metallicity
Fe,Co,Ni: ferromagnetic metals: electrons delocalise through interatomic d-orbitals overlap, SIE is not large i

* d insulators:	FeO, CoO, NiO: antiferromagnetic insulators
	Electrons keep their d-orbital
	character, interatomic d-obitals overlap is poor
	and therefore SIE is large
LDA exchange	e is wrong:
it predicts the	m to be non-magnetic metals
to ove	ercome this problem-> hybrid DFT
exchange is the problem.	
B3LY	P= 20 % HF + 80 % DFT(LDA, GGA)
0/ throu	igh fitting to lorge number of melocules
	ugh fitting to large number of molecules

SUMMARY
* magnetism is due to: Spin + Pauli Exclusion Principle + Coulomb repulsion+ Uncertainty Principle
*Fe,Co,Ni: ferromagnetic metals, Hund's coupling of d-orbitals+ electron delocalisation
*FeO,CoO,NiO: antiferromagnetic insulators, Hund's coupling of d-orbitals + electron localisation (oxygen)
*DFT works well for Fe, Co, Ni, but fails for FeO,CoO,NiO due to SIE possible solution is hybrid DFT: B3LYP