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Matrices and Symmetry

The algebra of matrices is ideal for describing 

the symmetry elements of molecules.

Matrices can be used with varying degrees of 

sophistication – the simplest is to use them to 

operate on atomic labels.

A Simple Example

The configuration of this 
triangular molecule can be 
represented by a column 
matrix C
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Any symmetry operation can be characterised 
by its effect on the column matrix – and thus 
can be represented as a (3x3) matrix

Rotation Clockwise by 120º
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Reflections / Mirror Planes
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Combining Operations – R then σ

Apply R120 then σv
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Combining Operations - σ then R

Apply σv then R120
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Summary

The column vector conveniently represents 

the essentials of the molecular topology.

Symmetry operations can be represented 

by matrices.

The normal rules of matrix multiplication 

reproduce application of multiple symmops

A non-commutative algebra.

General Rotations 

• In the normal X,Y 

system P is  (x,y).

• In the rotated X′, Y′

system P is (x′,y′)
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Rotation Matrices – 2D

Rewriting as a matrix equation
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The operation “rotate the coordinate system 

anti-clockwise by α”, is identical to “rotate 

objects clockwise by α”

The operation is implemented by multiplying 

the matrix onto the coordinates of any object.

Rotation Matrices – 3D

Rotation about the z-axis
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Or the x axis…


