Matrices and Symmetry

The algebra of matrices is ideal for describing the symmetry elements of molecules.

Matrices can be used with varying degrees of sophistication - the simplest is to use them to operate on atomic labels.

A Simple Example

The configuration of this triangular molecule can be represented by a column matrix

Any symmetry operation can be characterised by its effect on the column matrix - and thus can be represented as a (3×3) matrix

Rotation Clockwise by 120°

$$
\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right) \quad \longrightarrow
$$

$$
\left(\begin{array}{l}
B \\
C \\
A
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=R_{120}\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)
$$

Combining Operations -R then σ

Apply R_{120} then σ_{v}

$$
\begin{aligned}
\sigma_{A} R_{120}\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right) & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{l}
B \\
A \\
C
\end{array}\right)=\sigma_{C}
\end{aligned}
$$

Reflections / Mirror Planes

$$
\begin{aligned}
& \left(\begin{array}{l}
A \\
C \\
B
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\sigma_{A}\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)
\end{aligned}
$$

Combining Operations $-\sigma$ then R

Apply σ_{v} then R_{120}

$$
\begin{aligned}
R_{120} \sigma_{A}\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{l}
C \\
B \\
A
\end{array}\right)=\sigma_{B}
\end{aligned}
$$

Summary

The column vector conveniently represents the essentials of the molecular topology.

Symmetry operations can be represented by matrices.

The normal rules of matrix multiplication reproduce application of multiple symmops

A non-commutative algebra.

General Rotations

- In the normal X, Y system P is (x, y).
- In the rotated $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$ system P is $\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$

$$
\begin{aligned}
& x^{\prime}=x \cos (\alpha)+y \sin (\alpha) \\
& y^{\prime}=-x \sin (\alpha)+y \cos (\alpha)
\end{aligned}
$$

Rotation Matrices - 2D

Rewriting as a matrix equation

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos (\alpha) & \sin (\alpha) \\
-\sin (\alpha) & \cos (\alpha)
\end{array}\right)\binom{x}{y}=R_{\alpha}\binom{x}{y}
$$

The operation "rotate the coordinate system anti-clockwise by α ", is identical to "rotate objects clockwise by α "
The operation is implemented by multiplying the matrix onto the coordinates of any object.

Rotation Matrices - 3D

Rotation about the z-axis

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=R_{z}(\alpha)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Or the x axis...

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=R_{x}(\alpha)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

