Approximating Functions

Consider the geometric series ($\mathrm{a}=1, \mathrm{r}=\mathrm{x}$)
$1+x+x^{2}+x^{3}+x^{4}+\ldots+x^{n-1}=\frac{1-x^{n}}{1-x}$

But, written the other way round, this is a polynomial expansion of a function;

$$
\frac{1-x^{n}}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\ldots+x^{n-1}
$$

Power Series - Maclaurin

In general a function may be expanded in a power series defined as;

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{n} x^{n}+\ldots
$$

Here, all of the polynomial terms are centred on $\mathrm{x}=0$, it is and expansion about the point $x=0$ or a Maclaurin Series.

For example : $\cos (x)$

Note: x measured in radians
$\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots$

- We'll see why this is the expansion later
- More terms \rightarrow the power series becomes more accurate for a wider range of values of x

Why bother?

- Approximating an analytic function by its series expansion often helps us to visualise and understand its behaviour $-\mathrm{eg}:<\mathrm{E}\rangle(\mathrm{T})$ in the problem class.
- Series can be used to represent experimental data when you don't know the analytic form (eg: curve fitting, drawing a straight line...).

Finding the coefficients: Maclaurin
c_{0}
$f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots$
$f(0)=c_{0}+c_{1} \times 0+c_{2} \times 0+c_{3} \times 0+\ldots=c_{0}$
c_{1}
$\frac{d f}{d x}=c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\ldots$
$\left.\frac{d f}{d x}\right|_{x=0}=c_{1}$
c_{2}
The coefficients are the derivatives

$$
c_{3}
$$

$$
\begin{aligned}
& \frac{d^{2} f}{d x^{2}}=2 c_{2}+2 \times 3 c_{3}+3 \times 4 c_{4} x^{2}+\ldots \\
& \left.\frac{d^{2} f}{d x^{2}}\right|_{x=0}=2!c_{2} \\
& \frac{d^{3} f}{d x^{3}}=2 \times 3 c_{3}+2 \times 3 \times 4 c_{4} x+\ldots \\
& \left.\frac{d^{3} f}{d x^{3}}\right|_{x=0}=3!c_{3}
\end{aligned}
$$

$$
\begin{array}{l|l}
c_{0}=f(0) & c_{3}=\left.\frac{1}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x=0} \\
c_{1}=\left.\frac{d f}{d x}\right|_{x=0} & \ldots \\
c_{2}=\left.\frac{1}{2!} \frac{d^{2} f}{d x^{2}}\right|_{x=0} & c_{n}=\left.\frac{1}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x=0}
\end{array}
$$

That's it - you can now expand any function!

The Maclaurin Series - Summary

$$
f(x)=f(0)+\left.\frac{d f}{d x}\right|_{x=0} x+\left.\frac{1}{2!} \frac{d^{2} f}{d x^{2}}\right|_{x=0} x^{2}+\left.\frac{1}{3!} \frac{d^{3} f}{d x^{3}}\right|_{x=0} x^{3}+\ldots
$$

Knowledge of all of the derivatives at one point completely determines any well behaved function (eventually)

Maclaurin for $\cos (\mathrm{x})$

$\cos (0)=1$

$\left.\frac{d}{d x} \cos (x)\right\|_{x=0}=-\sin (0)=0$	$:$ All odd derivs 0
$\left.\frac{d^{2}}{d x^{2}} \cos (x)\right\|_{x=0}=-\cos (0)=-1$	$:$ Even derivs alternate
$-1,+1,-1,+1$ etc..	

$$
\cos (x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\ldots
$$

$$
\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots
$$

It works well for small x - how many terms

Power Series - Taylor

It may be convenient to expand about some other point, eg: $x=a$, then the power series is;
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots$

Expansion about the point $\mathrm{x}=\mathrm{a}$ is a Taylor Series. would we need to approximate a whole cycle of $\cos (x)$?

Taylor Series

The analysis is very similar to the Maclaurin series leading to;

$$
\begin{aligned}
f(x) & =f(a)+\left.\frac{d f}{d x}\right|_{x=a}(x-a)+\left.\frac{1}{2!} \frac{d^{2} f}{d x^{2}}\right|_{x=a}(x-a)^{2}+ \\
& +\left.\frac{1}{3!} \frac{d^{3} f}{d x^{3}}\right|_{x=a}(x-a)^{3}+\ldots
\end{aligned}
$$

$$
\cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}+\ldots
$$

OK but if we want to approximate $\cos (\mathrm{x})$ at $x=\pi$ we will need a lot of terms - better to expand about $\mathrm{x}=\pi$ using a Taylor expansion.
$\cos (x)=-1+\frac{1}{2!}(x-\pi)^{2}-\frac{1}{4!}(x-\pi)^{4}+\frac{1}{6!}(x-\pi)^{6}-\ldots$
$\cos (\pi)=-1$
$\left.\frac{d}{d x} \cos (x)\right|_{x=\pi}=-\sin (\pi)=0$
$\left.\frac{d^{2}}{d x^{2}} \cos (x)\right|_{x=\pi}=-\cos (\pi)=+1$
: Even derivs alternate
$+1,-1,+1,-1$ etc..

So ...
$\cos (x)=-1+\frac{1}{2!}(x-\pi)^{2}-\frac{1}{4!}(x-\pi)^{4}+\frac{1}{6!}(x-\pi)^{6}-\ldots$

Summary

- Knowledge of the derivatives of a function can be used to make a polynomial expansion which, if you use enough terms, reproduces the function exactly
- A Maclaurin series achieves this by expansion about $\mathrm{x}=0$
- Faster convergence can be achieved away from $\mathrm{x}=0$ by using a Taylor series which expands about any point, eg: $x=a$.

Potential Energy of a Diatomic Molecule

In H_{2} the potential energy of interaction of the atoms looks like this

The Morse Potential

To a good approximation the potential energy is give by the Morse form which is;

$$
E(r)=D_{e}\left\{1-e^{-\alpha(r-a)}\right\}^{2}
$$

with, $\mathrm{De}=4.79 \mathrm{eV}, \mathrm{a}=0.074 \mathrm{~nm}$ and $\alpha=19.3 \mathrm{~nm}^{-1}$.

Problem Class 2

Compute an Harmonic approximation to the Morse potential for H_{2} and thus compute the vibrations of the molecule.

