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Approximating Functions

Consider the  geometric series (a=1, r=x)
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But, written the other way round, this is a polynomial

expansion of a function;
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Power Series - Maclaurin

In general a function may be expanded in a 

power series defined as;
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Here, all of the polynomial terms are centred 

on x=0, it is and expansion about the point 

x=0 or a Maclaurin Series.

For example : cos(x)

• We’ll see why this is the expansion later

• More terms → the power series becomes 

more accurate for a wider range of values of x
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Note: x measured in radians

K+−+−= 642

720

1

24

1

2

1
1)cos( xxxx

cos(x)

2

2

1
1 x−

42

24

1

2

1
1 xx +−

642

720

1

24

1

2

1
1 xxx −+−

Why bother ?

• Approximating an analytic function by its 

series expansion often helps us to visualise 

and understand its behaviour – eg: <E>(T) in 

the problem class.

• Series can be used to represent experimental 

data when you don’t know the analytic form 

(eg: curve fitting, drawing a straight line…).

Finding the coefficients: Maclaurin
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The coefficients are the derivatives

That’s it - you can now expand any function !
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The Maclaurin Series - Summary

Knowledge of all of the derivatives at one 

point completely determines any well behaved 

function (eventually)
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Maclaurin for cos(x)
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: All odd derivs 0

: Even derivs alternate 

-1, +1, -1, +1 etc..
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It works well for small x – how many terms 

would we need to approximate a whole cycle 

of cos(x) ?

Power Series - Taylor 

It may be convenient to expand about some 

other point, eg: x=a, then the power series is;
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Expansion about the point x=a is a Taylor 

Series.
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Taylor Series

The analysis is very similar to the Maclaurin

series leading to;
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OK but if we want to approximate cos(x) at 

x=π we will need a lot of terms – better to 

expand about x= π using a Taylor expansion.

cos(x) : Taylor Series
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: All odd derivs 0

: Even derivs alternate 

+1, -1, +1, -1 etc..
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So …

Now an excellent approximation at x=π with a 

few terms.
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Summary 

• Knowledge of the  derivatives of a function can be 

used to make a polynomial expansion which, if you 

use enough terms, reproduces the function exactly

• A Maclaurin series achieves this by expansion 

about x=0

• Faster convergence can be achieved away from 

x=0 by using a Taylor series which expands about 

any point, eg: x=a.

Potential Energy of a Diatomic Molecule

In  H2 the potential energy of interaction of the 

atoms looks like this
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The Morse Potential

To a good approximation the potential energy 

is give by the Morse form which is;
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with, De=4.79eV, a = 0.074 nm and α=19.3 nm-1.

Problem Class 2

Compute an Harmonic approximation to the 

Morse potential for H2 and thus compute the 

vibrations of the molecule.


