## Sequences

A sequence is:

1. A list of numbers

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}
$$

2. A function whose domain is the set of all positive integers ie: $a_{n}=a(n)$

## Sequences and Series

## $1,3,5,7,9,11, \ldots \ldots$

$-999,807,54,1,-10,-50, \ldots$.
$1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+\ldots$.

## Example 1

$a_{n}=\frac{1}{n}$

$\begin{array}{llllll}\text { n } & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllll}\mathbf{a}_{\mathbf{n}} & 1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5\end{array}$

More Examples


## Recursive Definition of a Sequence

$$
\begin{aligned}
& a_{1}=2 \\
& a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}
\end{aligned}
$$

$\begin{array}{ccccc}\mathbf{n} & 1 & 2 & 3 & 4 \\ \mathbf{a}_{\mathbf{n}} & 2 & 3 / 2 & 17 / 12 & 577 / 408\end{array}$

## The Limit of a Sequence

The limit, $L$, of the sequence $\left\{a_{n}\right\}$ is;

$$
L=\lim _{n \rightarrow \infty}\left\{a_{n}\right\}
$$

If an $n$ exists such that $\left|L-a_{n}\right|<\varepsilon$ for any $\varepsilon>0$.
A sequence may be convergent, divergent or conditionally convergent

## Limits - Examples

$\lim _{n \rightarrow \infty}\{1 / n\}=0$

$$
\lim _{n \rightarrow \infty}\left\{\frac{(-1)^{n}}{\sqrt{n}}\right\}=0
$$



## Series

A series is a summed list of numbers:

$$
S_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots+a_{n}
$$

$S_{n}$ is a number - the partial sum of $n$-terms of the series. This is usually written:

$$
S_{n}=\sum_{i=1}^{n} a_{i}
$$

## The $n^{\text {th }}$ term test

The series,

$$
\sum_{i=1}^{n} a_{i}
$$

Will converge if,

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

and will diverge otherwise.

## Finding Limits...

Sometimes the limit is not obvious:
$\lim _{n \rightarrow \infty}\left\{\frac{5 n^{2}-10 n+2}{2 n^{2}+1}\right\}$

For large $n$ the $n^{2}$ term dominates.. $L=5 / 2$


## Convergence of a Series

The infinite series, $\quad \sum_{i=1}^{\infty} a_{i}$
Is convergent if,

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}=L
$$

and divergent if the sequence of its partial sums $S_{n}$ does not converge

## The Arithmetic Series

$$
\begin{aligned}
S_{n} & =a+[a+d]+[a+2 d]+\ldots+[a+(n-1) d] \\
& =\sum_{i=1}^{n}[a+d(i-1)]
\end{aligned}
$$

For example with $\mathrm{a}=1$ and $\mathrm{d}=1$;

$$
S_{6}=1+2+3+4+5+6
$$

## Summing The Arithmetic Series

This series is sufficiently simple for its partial sum to be written in closed form:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

So the sum of the first n integers is:

$$
S_{n}=1+2+3+\ldots+n=\frac{1}{2} n(n+1)
$$

## Proof!

Just write the series out forward and backwards

$$
\begin{aligned}
& S_{n}=a+[a+d]+\ldots .+[a+(n-1) d] \\
& S_{n}=[a+(n-1) d]+[a+(n-2) d]+\ldots .+c a
\end{aligned}
$$

Add the two series term by term,

$$
\begin{aligned}
2 S_{n} & =[2 a+(n-1) d]+[2 a+(n-1) d]+\ldots . .+[2 a+(n-1) d] \\
2 S_{n} & =n[2 a+(n-1) d] \\
S_{n} & =\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$

## Summing the Geometric Series

$$
\begin{aligned}
S_{n} & =a+a r+a r^{2}+\ldots+a r^{n-1} \\
r S_{n} & =\quad a r+a r^{2}+\ldots+a r^{n-1}+a r^{n} \\
S_{n}-r S_{n} & =a-a r^{n} \\
S_{n}(1-r) & =a\left(1-r^{n}\right) \\
S_{n} & =a \frac{\left(1-r^{n}\right)}{(1-r)}, \quad(f o r, r \neq 1)
\end{aligned}
$$

## The Geometric Series

$$
\begin{aligned}
S_{n} & =a+a r+a r^{2}+\ldots+a r^{n-1} \\
& =\sum_{i=1}^{n} a r^{i-1}
\end{aligned}
$$

For example with $\mathrm{a}=1$ and $\mathrm{r}=2$;

$$
S_{6}=1+2+4+8+16+32
$$

## GS is a Polynomial Expansion

$$
a+a r+a r^{2}+\ldots+a r^{n-1}=a \frac{\left(1-r^{n}\right)}{(1-r)}
$$

Eg: for $\mathrm{a}=1$;

$$
\frac{\left(1-r^{n}\right)}{(1-r)}=1+r+r^{2}+\ldots+r^{n-1}
$$

## The Infinite Geometric Series

$$
\begin{gathered}
S_{n}=a+a r+a r^{2}+\ldots \ldots . . \\
=\sum_{i=1}^{\infty} a r^{i-1} \\
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} a \frac{\left(1-r^{n}\right)}{(1-r)}=a \frac{1}{1-r}, i f|r|<1
\end{gathered}
$$

## Infinite GS: power series expansion

$$
\frac{1}{(1-r)}=1+r+r^{2}+r^{3}+\ldots . ., \text { for }|r|<1
$$

The geometric series with $\mathrm{a}=1$ is the power series expansion of $(1-\mathrm{r})^{-1}$.
This series converges for $|\mathrm{r}|<1$ and diverges otherwise.

## The Convergence of Series...

The convergence of a series is not always immediately apparent from inspection?

Example: The harmonic series looks at first sight as if it should converge !

$$
S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+
$$

So,

## The Harmonic Series II

Each of the partial sums, $\mathrm{s}_{\mathrm{n}}$, contains $2^{\mathrm{n}}$ terms each of which has a smallest term $1 / 2^{\mathrm{n}+1}$.
So, each $\mathrm{s}_{\mathrm{n}}>2 \mathrm{n} .\left(1 / 2^{\mathrm{n}+1}\right)=1 / 2$.

$$
S>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots .
$$

which, diverges

The Harmonic Series

$$
\begin{gathered}
S=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+ \\
+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right) \\
S=1+\frac{1}{2}+s_{1}+s_{2}+s_{3}+\ldots+s_{n}
\end{gathered}
$$

The Alternating Harmonic Series

$$
E=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

This series is conditionally convergent in short we can make it converge to any answer we want...
so what?

## Ionic Bonding!



The energy of a chain of ions of alternating charge (q) separation $a$ is;

$$
E=-\frac{2 q^{2}}{4 \pi \varepsilon_{0} a}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\right) \text { Joules/ion }
$$

This is the alternating harmonic series....
So - what is the energy of rocksalt $\mathrm{Na}^{+} \mathrm{Cl}^{-}$?

Alternating Harmonic Series $=2.000$
Strategy:
-Sum just positive terms to get a sum $>2$
-Subtract a single negative term

- Add more positive terms until $>2$
-Subtract a single negative term
-Repeat for ever

And... it must converge to 2.

## Conditional Convergence

The limit of the alternating harmonic series depends on how we arrange the sum of the terms, so...
We can make it converge to any number - for example 2.0000
Note: There are an infinite number of terms and we can add them in any order - however we decide to do that we will never run out of positive or negative terms.

Alternating Harmonic Series $=2.000$

$$
\begin{aligned}
1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{15} & =2.021800422 \\
-\frac{1}{2} & =1.521800422 \\
+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\ldots .+\frac{1}{41} & =2.004063454 \\
-\frac{1}{4} & =1.754063454 \\
+\frac{1}{43}+\frac{1}{45}+\ldots .+\frac{1}{69} & =2.009446048 \quad \text { Etc } \ldots
\end{aligned}
$$

## How odd is that?

This may seem very strange.
But..
We have an infinite number of + ve and $-v e$ terms - it doesn't matter that we are using more + ve ones than -ve ones...

The sum, and thus the energy of a rocksalt crystal, converges to any number you want !!

## The Energy of NaCl !!

