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Sequences

A sequence is:

1. A list of numbers 

2. A function whose domain is the set of all 

positive integers ie: an=a(n)

naaaaa ,....,,,, 4321

Sequences and Series

1, 3, 5, 7, 9, 11, …..

-999, 807, 54, 1, -10, -50, ….

1 + ½ + 1/3 + ¼ + 1/5 + 1/6 +…..
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More Examples
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Recursive Definition of a Sequence
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The Limit of a Sequence

The limit, L, of the sequence {an} is;
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If  an n exists such that |L-an| < ε for any ε>0.

A sequence may be convergent, divergent or 

conditionally convergent
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Limits - Examples
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Finding Limits…

Sometimes the limit is not obvious:
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For large n the n2 term 

dominates.. L=5/2

Series

A series is a summed list of numbers:

nn aaaaaS +++++= ....4321
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Sn is a number – the partial sum of n-terms of 

the series. This is usually written:

Convergence of a Series

The infinite series, ∑
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and divergent if the sequence of its partial 

sums Sn does not converge

The nth term test

The series, ∑
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and will diverge otherwise.

Series in Chemistry

Many problems  require series:

• The partition function

•Solutions of differential equations

•Huckel theory / LCAO

•Fourier analysis

•Bond energy sums 
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The Arithmetic Series

For example with a=1 and d=1;
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Summing The Arithmetic Series

This series is sufficiently simple for its partial 

sum to be written in closed form:
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So the sum of the first n integers is:
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Proof !

Just write the series out forward and backwards
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Add the two series term by term,
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The Geometric Series
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For example with a=1 and r=2;
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Summing the Geometric Series
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GS is a Polynomial Expansion

Eg: for a=1;
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The Infinite Geometric Series
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Infinite GS: power series expansion

The geometric series with a=1 is the power 

series expansion of (1-r)-1
.

This series converges for |r|<1 and diverges 

otherwise.
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The Convergence of Series…

The convergence of a series is not always 
immediately apparent from inspection ?

Example: The harmonic series looks at first 
sight as if it should converge !
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The Harmonic Series
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The Harmonic Series II

Each of the partial sums, sn, contains 2n terms 

each of which has a smallest term 1/2n+1. 

So, each sn > 2n.(1/2n+1) = 1/2.

So,
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which, diverges

The Alternating Harmonic Series

This series is conditionally convergent in short we 

can make it converge to any answer we want…

so what ?
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Ionic Bonding !

The energy of a chain of ions of alternating charge 

(q) separation a is;
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This is the alternating harmonic series….

So – what is the energy of rocksalt Na+Cl- ?

Conditional Convergence

The limit of the alternating harmonic series 

depends on how we arrange the sum of the 

terms, so…

We can make it converge to any number - for 

example 2.0000

Note: There are an infinite number of terms 

and we can add them in any order – however 

we decide to do that we will never run out of 

positive or negative terms.

Alternating Harmonic Series = 2.000

Strategy: 

•Sum just positive terms to get a sum > 2

•Subtract a single negative term

•Add more positive terms until > 2

•Subtract a single negative term

•Repeat for ever

And… it must converge to 2.

Alternating Harmonic Series = 2.000
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Etc…

How odd is that ?

This may seem very strange. 

But..

We have an infinite number of +ve and –ve

terms – it doesn’t matter that we are using 

more +ve ones than –ve ones…

The sum, and thus the energy of a rocksalt

crystal, converges to any number you want !!

The Energy of NaCl !!


