

Some examples of typical problems

A brief review ...

Determinants

Quantum mechanics

Beer-LambertThe Beer-Lambert Law: in a multicomponentsystem the total adsorbtion is the sum of the
contributions from each component.
Say a 4 component system; $A_{total}(\lambda) = l\varepsilon_1 c_1 + l\varepsilon_2 c_2 + l\varepsilon_3 c_3 + l\varepsilon_4 c_4$ $l - thickness of the sample(known)<math>\varepsilon_i - adsorbtion of species I(known)<math>c_i - concentration of species I(unknown)$

To Determine the Concentrations

In a 4 component system: Measure at 4 different wavelengths Set up 4 simultaneous equations and solve !

$$\begin{split} &A_{\textit{total}}(\lambda_{1}) = l \mathcal{E}_{1}(\lambda_{1}) c_{1} + l \mathcal{E}_{2}(\lambda_{1}) c_{2} + l \mathcal{E}_{3}(\lambda_{1}) c_{3} + l \mathcal{E}_{4}(\lambda_{1}) c_{4} \\ &A_{\textit{total}}(\lambda_{2}) = l \mathcal{E}_{1}(\lambda_{2}) c_{1} + l \mathcal{E}_{2}(\lambda_{2}) c_{2} + l \mathcal{E}_{3}(\lambda_{2}) c_{3} + l \mathcal{E}_{4}(\lambda_{2}) c_{4} \\ &A_{\textit{total}}(\lambda_{3}) = l \mathcal{E}_{1}(\lambda_{3}) c_{1} + l \mathcal{E}_{2}(\lambda_{3}) c_{2} + l \mathcal{E}_{3}(\lambda_{3}) c_{3} + l \mathcal{E}_{4}(\lambda_{3}) c_{4} \\ &A_{\textit{total}}(\lambda_{4}) = l \mathcal{E}_{1}(\lambda_{4}) c_{1} + l \mathcal{E}_{2}(\lambda_{4}) c_{2} + l \mathcal{E}_{3}(\lambda_{4}) c_{3} + l \mathcal{E}_{4}(\lambda_{4}) c_{4} \end{split}$$

	<i>p</i> - xylene	<i>m</i> - xylene	<i>o-</i> xylene	ethyl- benzene	A _{total}
λ	εl	εl	ε <i>l</i>	εl	
12.5	1.502	0.0514	0	0.0408	0.1013
13.0	0.0261	1.1516	0	0.0820	0.09943
13.4	0.0342	0.0355	2.532	0.2933	0.2194
14.3	0.0340	0.0684	0	0.3470	0.03396
	do we sol		÷		

$$\ln(k_1) = \ln(A) - \frac{L_a}{RT_1}$$
$$\ln(k_2) = \ln(A) - \frac{E_a}{RT_2}$$

The General Problem (2 variables) Find x and y given; $a_{11}x + a_{12}y = b_1$ $a_{21}x + a_{22}y = b_2$ Where $a_{11}, a_{12}, a_{21}, a_{22}$ and b_1, b_2 are known

constants

The General Solution (2 variables)

$$x = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}} \qquad y = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}$$

Note: the denominators are the same and can be written as a *determinant*;

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \equiv a_{11}a_{22} - a_{12}a_{21}$$

Determinants (2x2)
(top left * bottom right) - (top right * bottom left)
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \equiv a_{11}a_{22} - a_{12}a_{21}$$

Determinants Allow you to solve large sets of linear equations and ... There is a simple prescription for computing them And it is...

 The General Case

 The determinant of any array can be computed in this way.

 For example;

 A 4x4 determinant can be expanded in the in terms of 3x3 cofactors, which in turn get expanded in terms of 2x2 cofactors...

 W

Computers are very good at this !

Summary

Systems of linear equations turn up all the time in chemistry.

These problems can be solved using determinants.

There is a simple (but involved!) method for computing determinants of arbitrary size.

