Linear Equations in Chemistry

Some examples of typical problems

A brief review ...

Determinants

Quantum mechanics

Example1: Adsorbtion Spectroscopy

Need to find the concentration of each species from the total adsorbtion $\mathrm{A}(\lambda)$

Beer-Lambert

The Beer-Lambert Law: in a multicomponent system the total adsorbtion is the sum of the contributions from each component.
Say a 4 component system;

$$
A_{\text {total }}(\lambda)=l \varepsilon_{1} c_{1}+l \varepsilon_{2} c_{2}+l \varepsilon_{3} c_{3}+l \varepsilon_{4} c_{4}
$$

l - thickness of the sample
$\varepsilon_{i}-$ adsorbtion of species I
(known)
(known)
$c_{i}-$ concentration of species I (unknown)

To Determine the Concentrations

In a 4 component system:
Measure at 4 different wavelengths
Set up 4 simultaneous equations and solve!
$A_{\text {total }}\left(\lambda_{1}\right)=l \varepsilon_{1}\left(\lambda_{1}\right) c_{1}+l \varepsilon_{2}\left(\lambda_{1}\right) c_{2}+l \varepsilon_{3}\left(\lambda_{1}\right) c_{3}+l \varepsilon_{4}\left(\lambda_{1}\right) c_{4}$
$A_{\text {total }}\left(\lambda_{2}\right)=l \varepsilon_{1}\left(\lambda_{2}\right) c_{1}+l \varepsilon_{2}\left(\lambda_{2}\right) c_{2}+l \varepsilon_{3}\left(\lambda_{2}\right) c_{3}+l \varepsilon_{4}\left(\lambda_{2}\right) c_{4}$
$A_{\text {total }}\left(\lambda_{3}\right)=l \varepsilon_{1}\left(\lambda_{3}\right) c_{1}+l \varepsilon_{2}\left(\lambda_{3}\right) c_{2}+l \varepsilon_{3}\left(\lambda_{3}\right) c_{3}+l \varepsilon_{4}\left(\lambda_{3}\right) c_{4}$
$A_{\text {total }}\left(\lambda_{4}\right)=l \varepsilon_{1}\left(\lambda_{4}\right) c_{1}+l \varepsilon_{2}\left(\lambda_{4}\right) c_{2}+l \varepsilon_{3}\left(\lambda_{4}\right) c_{3}+l \varepsilon_{4}\left(\lambda_{4}\right) c_{4}$

Example 2: Chemical Kinetics

The Arrhenius equation takes the linear form

$$
\ln (k)=\ln (A)-\frac{E_{a}}{R T}
$$

Measure at 2 different temperatures to get 2 simultaneous equations to solve for A and E_{a}

$$
\begin{aligned}
& \ln \left(k_{1}\right)=\ln (A)-\frac{E_{a}}{R T_{1}} \\
& \ln \left(k_{2}\right)=\ln (A)-\frac{E_{a}}{R T_{2}}
\end{aligned}
$$

Other Examples

Balancing complex chemical equations

Mass spectroscopic analysis of mixtures

Regression (fitting)

- Michaelis-Menten [S](k) fitting
- All model fitting

Quantum Mechanics - Huckel Theory

Reminder: Solution by Inspection

OK - but for multiple equations this process rapidly becomes tedious \& eventually intractable

Reminder: Graphical Interpretation

Solving 2 linear equations is simply finding where two lines cross

Solving n equations is where n lines cross in an n-dimensional space !

The General Problem (2 variables)

Find x and y given;

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

Where $a_{11}, a_{12}, a_{21}, a_{22}$ and b_{1}, b_{2} are known constants

The General Solution (2 variables)

$$
x=\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{11} a_{22}-a_{12} a_{21}} \quad y=\frac{b_{2} a_{11}-b_{1} a_{21}}{a_{11} a_{22}-a_{12} a_{21}}
$$

Note: the denominators are the same and can be written as a determinant;

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \equiv a_{11} a_{22}-a_{12} a_{21}
$$

Determinants (2x2)

(top left * bottom right) - (top right * bottom left)

General Solution in Determinants (2×2)

$$
x=\frac{\left|\begin{array}{cc}
b_{1} & b_{2} \\
a_{12} & a_{22}
\end{array}\right| \quad\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \quad y=\frac{\left|\begin{array}{cc}
b_{1} & b_{2} \\
a_{21} & a_{11}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|} \text {. } 10}{}
$$

Determinants are the practical method for solving linear problems with many unknowns

Determinants ...

Allow you to solve large sets of linear equations and ...

There is a simple prescription for computing them

And it is...

Computing Determinants (3×3 case)
A 3×3 determinant can be computed in terms of 2×2 determinants as follows...

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|= \\
& a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

The Rules !
$\left|\begin{array}{lll}+ & - & + \\ a_{11} & a_{12} & a_{13} \\ a_{21} & \begin{array}{ll}a_{22} & a_{23} \\ a_{31} & a_{32} \\ a_{33}\end{array} \left\lvert\,=\begin{array}{l}\text { Associate a sign with each of the } \\ \text { elements of the first row }\end{array}\right. \\ a_{11} \left\lvert\, \begin{array}{l}\text { Take each element in turn and multiply } \\ \text { it by the determinant of the 2x2 matrix } \\ \text { left after crossing out its row and column }\end{array}\right. \\ a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

For example..

$$
\begin{aligned}
& \left|\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right|=2 \times 4-1 \times 3=8-3=5 \\
& \left|\begin{array}{ccc}
1 & -1 & 2 \\
0 & 3 & 0 \\
2 & -2 & -2
\end{array}\right|=1 \times(3 \times-2)--1(0)+2(0-3 \times 2)
\end{aligned}
$$

$$
=-6+0-12=-18
$$

Terminology

The signed 2×2 determinants associated with each element of the first row are called cofactors. The cofactor of a_{11} is $\mathrm{A}_{11} \ldots$

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \quad, A_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|
$$

The General Case

The determinant of any array can be computed in this way.

For example;

A 4×4 determinant can be expanded in the in terms of 3×3 cofactors, which in turn get expanded in terms of 2×2 cofactors...

Computers are very good at this!
.

Writing in Terms of Cofactors

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}
$$

Note that the minus sign is part of A_{12}
\qquad

Summary

Systems of linear equations turn up all the time in chemistry.

These problems can be solved using determinants.

There is a simple (but involved!) method for computing determinants of arbitrary size.

The 4×4 Case

\section*{$\left|\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14}\end{array}\right|$
 $a_{21} \quad a_{22} \quad a_{23} \quad a_{24}=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}+a_{14} A_{14}$ | a_{41} | a_{42} | a_{43} | a_{44} |
| :--- | :--- | :--- | :--- |
| a_{4} | a_{3} | | |}

With, $\quad A_{11}=+\left|\begin{array}{lll}a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44}\end{array}\right|$
etc.

Quantum Mechanics

The interactions between atoms are governed by the quantum mechanical behaviour of the electrons.

Lets look in the simplest way at the reason for the formation of a chemical bond...

