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A practical and efficient method for exploiting second order

Rayleigh–Schrödinger perturbation theory to approximate the

correlation energy contribution to the London dispersion inter-

action is presented. The correlation energy is estimated as the

Møller–Plesset contribution computed using single particle

orbitals from hybrid exchange density functional theory as the

reference state.

The London dispersion force (LDF) is responsible for many

of the physical properties of solids, liquids and gasses;

for instance, it largely determines the three dimensional

arrangements of biological molecules and polymers. An

interesting case where the LDF is of paramount importance

is in the interpretation of He-atom scattering data in order to

establish the atomic scale structure and dynamic of surfaces.

This technique has potential as a high resolution and non-

invasive surface probe that is sensitive only to the outermost

surface layer. Fully realising this potential requires a

quantitative theory of the scattering process that must be

based on an accurate and reliable determination of the

He-surface interaction. A first principles theory of the inter-

action potential requires an accurate description of the LDF

and thus of the electronic correlation.

In periodic systems, the effects of electronic exchange

and correlation are typically approximated within density

functional theory (DFT). The widely used local (local density

approximation LDA) and semi-local (generalised gradient

approximation, GGA) expressions for the correlation energy

depend on the density and its gradients at a point in space.

These approximations cannot describe the LDF. The significant

improvement to the description of the non-local exchange

introduced in hybrid-exchange functionals, which combine

Fock exchange and GGA exchange (e.g. B3LYP1 and PBE0,

in which the percentage of Fock exchange is 20% and 25%,

respectively), does not improve the description of long range

LDF which is completely absent in the Hartree–Fock (HF)

approximation.

These problems have been addressed by introducing ad hoc

corrections to the correlation energy. The approach of Wilson-

Levi is to introduce a semi-empirical correlation functional2

and Grimme has introduced an empirical correction term

in the total energy.3 These techniques, which have been

parameterised and used successfully in a variety of systems,

have recently been shown to be unsuitable for calculating the

He-surface interaction.4

An efficient and reliable procedure for the calculation

of the correlation energy in periodic systems is second order

Rayleigh–Schrödinger perturbation theory, often referred to

as the Møller–Plesset perturbation theory at second order

(MP2), as recently implemented in the CRYSCOR5,6 program.

Taking the HF wavefunction as a reference MP2 theory yields

the second order contribution to the correlation energy

including contributions from virtual excitations on separated

fragments. It thus provides an estimate of the long range

interaction that is referred to as the uncoupled dispersion

energy. The HF + MP2 theory has previously been used to

describe the qualitative nature of the He–MgO(100) inter-

action.4 It is important to note that the magnitude of the

MP2 correction depends strongly on the reference state. For

instance, if the time-dependent HF (TDHF) wavefunction is

used as the reference, the MP2 estimate of the correlation

energy, referred to as the coupled dispersion energy, is

10%–20% larger than the uncoupled dispersion energy in

noble gas dimers improving agreement with the observed

binding energy.7

The physical origin of the underestimate of the LDF

computed from the HF orbitals can be understood in terms

of the approximate Unsöld expression8 for the dispersion

energy contribution to the interaction between two molecules

A and B at a distance r,

Edisp � �
3aAaBIAIB

4ðIA þ IBÞ
r�6 ð1Þ

where a and I are the average molecular dipole polarisabilities

and ionisation potentials, respectively. The computed polaris-

ability is underestimated in the HF approximation due to

the significant overestimate of the energy gap between the

occupied and unoccupied energy levels;9 in TD-HF this gap is

reduced and thus the polarisability corrected. It is now well

established that the density functional theory implemented
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using local and semi-local functionals suffers from a self-

interaction error and thus significantly underestimates energy

gaps while hybrid exchange theory, such as the B3LYP

functional, provides reasonable estimates of single particle

energy gaps in a wide variety of materials.10–12 In the current

work this is exploited to define a pragmatic and efficient

method for exploiting the second order perturbation theory

to compute the correlation energy in periodic systems. The

correlation contribution is estimated as the MP2 energy

computed using the B3LYP single particle orbitals as the

reference state. The total energy is obtained as the sum of

the HF energy and the MP2 estimate of the correlation energy;

a procedure denoted here as HF + MP2(B3LYP). This choice

avoids the potential double counting of the correlation energy

contribution at short range if the B3LYP energy were added to

the MP2 estimate of the correlation energy; denoted here

as B3LYP + MP2(B3LYP). In order to document the

reliability of this method the energy of the He dimer and the

He–MgO(100) surface are computed using the following

energy expressions: HF + MP2; B3LYP + MP2(B3LYP);

HF + MP2(B3LYP).

The computed binding energy curvew of the He2 dimer is

presented in Fig. 1. The long range behaviour of the potential

in both the HF + MP2 and HF + MP2(B3LYP) reproduces

the expected functional form for the He–He interaction, which

decays as 1
z6
, where z is the He–He distance. The strength

of the interaction is, however, significantly different. As has

previously been reported, HF + MP2 generally underestimates

the correlation energy contribution yielding onlyE67% of the

exact total energy for closed shell molecules.16,17 This

trend is repeated here with the HF + MP2 well depth being

E70% of that computed with HF + MP2(B3LYP). As a

consequence the agreement between the well depth given by

HF + MP2(B3LYP) and the experimental value (0.91 meV) is

excellent. The potential energy curve closely resembles that

computed at the CCSD(T) level of theory.18

The He–MgO interaction is studied by computing the

binding energy of an isolated He atom and the bulk cleaved

MgO(100) surface at the Mg surface site. The MgO(100)

surface is approximated as a rigid 2D periodic slab 3 atomic

layers deep cut from the bulk structure at the experimental

lattice constant (a = 4.211 Å).19 This system provides a well

defined reference geometry for studying the effects of different

approximations on electronic exchange and correlation.4

Adsorption of the He atom directly above the surface of the

Mg ion is considered at separations between the He atom and

the centroid of the outermost layer in the range: 3 Å : 7 Å.

A 2 � 2 supercell of the primitive surface unit cell is found to

be sufficient to reduce the He–He lateral interactions to

negligible values. In Fig. 2, the computed counterpoise

corrected binding energy, BE (defined in Appendix in ref. 4

and 20), is displayed for the following energy expressions:

HF + MP2; B3LYP + MP2(B3LYP); HF + MP2(B3LYP).

All the curves produce an attractive interaction binding the He

atom to the surface in a potential well for which the position

and depth of the minimum depend on the reference wave-

function. The value obtained at HF+MP2 is �4.1 meV at an

equilibrium distance of 3.75 Å, B3LYP + MP2(B3LYP)

provides �3.1 meV at 4.07 Å and HF + MP2(B3LYP) gives

�6.7 meV at 3.78 Å. There is no firmly established observation

of the well depth with values deduced from He-scattering

spectra being in the range 7.5 meV21–12.5 meV.22 The agreement

of the HF + MP2(B3LYP) well depth with that observed is

significantly better than that obtained using the HF + MP2

energy expression. Further support for the accuracy of the

HF + MP2(B3LYP) curve is provided by its consistency with

trends known established in previous studies of interactions

with He atoms. As noted above the HF + MP2 approach

tends to underestimate the bonding interaction yielding 67%

of the observed or CCSD(T) computed binding energy for the

He dimer. In the current study the HF+MP2 contribution to

the He–MgO(100) binding is on average 66% of the HF +

MP2(B3LYP) binding energy. This is a strong indication that

the HF + MP2(B3LYP) binding energy is within a few

percent of that which would be computed in a full CCSD(T)

calculation.

The long range behaviour of the potential energy surface is

important for the description of the He-scattering process.

The expected behaviour for a He atom interacting with

a continuum dielectric or with the surface via a set of pairwise

Fig. 1 The binding energy curve for the He2 dimer computed using

HF + MP2, red dashed line, and HF + MP2(B3LYP), black solid

line. The experimental value is shown by the blue star.18

Fig. 2 The counterpoise corrected binding energy BE curve for

adsorption above the Mg site of He–MgO(100) with respect to

the clean MgO(100) surface and the isolated He atom within the

B3LYP + MP2(B3LYP), blue dashed line, HF + MP2, red dashed

line and HF + MP2(B3LYP), black solid line.
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1/r6 interactions is 1/z3 where z is the He-surface separation.23

The expected behaviour when interacting with a single

monolayer is 1/z4. The computed behaviour at long range

for HF +MP2(B3LYP) is 1/z3.9 and for HF+MP2 is 1/z4 as

expected for the model used here in which the He atom is

interacting with a thin slab consisting of 3 atomic layers

of MgO.

In conclusion, a practical and efficient method for the

approximation of the correlation energy for a He-atom inter-

acting with an insulating surface has been presented. The

method is based on the calculation of the MP2 energy using

the B3LYP single particle orbitals as a reference state. The

total energy of the system is obtained by adding the

Hartree–Fock energy to this MP2 contribution and is denoted

as HF + MP2(B3LYP). The results obtained for the He2
dimer and the He–MgO(001) surface interaction reproduce the

expected long range behaviour and the position and value of

the observed well depth in the dimer. It seems probable, based

on well established trends and the available experimental data,

that a similar level of accuracy is achieved for the He–MgO

interaction. As the local MP2 formalism is used, the time to

completion for these calculations is similar to that for the

underlying single particle solution and, thus calculations can

be completed without using exceptional computer resources.

For this class of systems HF + MP2(B3LYP) provides a

reliable and efficient method for obtaining near experimental

binding energy curves. This methodology resolves the

principal problem in the interpretation of He-atom scattering

spectra from insulating surfaces and will facilitate the

extraction of surface structures and dynamical data from

experimental spectra.
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Notes and references

w All calculations (see ref. 4 for details) have been performed using
a development version of the CRYSTAL software package.13

CRYSTAL is based on the expansion of the crystalline orbitals as a
linear combination of a local basis set consisting of atom centred

Gaussian orbitals. The main approximation is then the choice of the
basis set (see basis set BS4 in ref. 4). The Coulomb and exchange series
are summed directly and truncated using overlap criteria with thresh-
olds of 10�9, 10�9, 10�9, 10�9 and 10�17 as described previously13,14

and according to the previous paper on the dispersion contribution
with the CRYSTAL code.2,4 For the MP2 calculations, more severe
thresholds on the exchange contribution have to be adopted for
the calculation of the HF wavefunction:4,15 10�9, 10�9, 10�9, 10�25

and 10�75.
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9 G. Mallia, R. Dovesi and F. Corà, Phys. Status Solidi B, 2006, 243,
2935.

10 J. Muscat, A. Wander and N. Harrison, Chem. Phys. Lett., 2001,
342, 397–401.

11 G. Mallia, R. Orlando, M. Llunell and R. Dovesi, in Computa-
tional Materials Science, ed. C. Catlow and E. Kotomin, IOS Press,
Amsterdam, 2003, vol. 187, pp. 102–121.
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