Posts Tagged ‘Valence’

What’s in a name? Carbenes: a reality check.

Sunday, September 11th, 2016
No Gravatar

To quote from Wikipedia: in chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The most ubiquitous type of carbene of recent times is the one shown below as 1, often referred to as a resonance stabilised or persistent carbene. This type is of interest because of its¬†ability to act as a ligand to an astonishingly wide variety of metals, with many of the resulting complexes being¬†important catalysts. The Wiki page on persistent carbenes shows them throughout in form 1 below, thus reinforcing the belief that they have a valence of two and by implication six (2×2 shared + 2 unshared) electrons in the valence shell of carbon. Here I consider whether this name is really appropriate.

(more…)

Real hypervalency in a small molecule.

Sunday, February 21st, 2016
No Gravatar

Hypervalency is defined as a molecule that contains one or more main group elements formally bearing more than eight  electrons in their  valence shell. One example of a molecule so characterised was CLi6[1] where the description "“carbon can expand its octet of electrons to form this relatively stable molecule“ was used. Yet, in this latter case, the octet expansion is in fact an illusion, as indeed are many examples that are cited. The octet shell remains resolutely un-expanded. Here I will explore the tiny molecule CH3F2- where two extra electrons have been added to fluoromethane.

(more…)

References

  1. H. Kudo, "Observation of hypervalent CLi6 by Knudsen-effusion mass spectrometry", Nature, vol. 355, pp. 432-434, 1992. http://dx.doi.org/10.1038/355432a0

VSEPR Theory: A closer look at trifluorothionitrile, NSF3.

Saturday, January 16th, 2016
No Gravatar

The post on applying VSEPR ("valence shell electron pair repulsion") theory to the geometry of ClF3 has proved perennially popular. So here is a follow-up on another little molecue, F3SN. As the name implies, it is often represented with an S≡N bond. Here I take a look at the conventional analysis.

(more…)