Posts Tagged ‘Stereochemistry’

Organocatalytic cyclopropanation of an enal: (computational) assignment of absolute configurations.

Saturday, September 1st, 2018
No Gravatar

I am exploring the fascinating diverse facets of a recently published laboratory experiment for undergraduate students.[1] Previously I looked at a possible mechanistic route for the reaction between an enal (a conjugated aldehyde-alkene) and benzyl chloride catalysed by base and a chiral amine, followed by the use of NMR coupling constants to assign relative stereochemistries. Here I take a look at some chiroptical techniques which can be used to assign absolute stereochemistries (configurations).

(more…)

References

  1. M. Meazza, A. Kowalczuk, S. Watkins, S. Holland, T.A. Logothetis, and R. Rios, "Organocatalytic Cyclopropanation of (E)-Dec-2-enal: Synthesis, Spectral Analysis and Mechanistic Understanding", Journal of Chemical Education, vol. 95, pp. 1832-1839, 2018. http://dx.doi.org/10.1021/acs.jchemed.7b00566

Tetrahedral carbon and cyclohexane.

Wednesday, August 22nd, 2018
No Gravatar

Following the general recognition of carbon as being tetrahedrally tetravalent in 1869 (Paterno) and 1874 (Van’t Hoff and Le Bell), an early seminal exploitation of this to the conformation of cyclohexane was by Hermann Sachse in 1890.[1] This was verified when the Braggs in 1913[2], followed by an oft-cited article by Mohr in 1918,[3] established the crystal structure of diamond as comprising repeating rings in the chair conformation. So by 1926, you might imagine that the shape (or conformation as we would now call it) of cyclohexane would be well-known. No quite so for everyone!

(more…)

References

  1. H. Sachse, "Ueber die geometrischen Isomerien der Hexamethylenderivate", Berichte der deutschen chemischen Gesellschaft, vol. 23, pp. 1363-1370, 1890. http://dx.doi.org/10.1002/cber.189002301216
  2. W.H. Bragg, and W.L. Bragg, "The Structure of the Diamond", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 89, pp. 277-291, 1913. http://dx.doi.org/10.1098/rspa.1913.0084
  3. E. Mohr, "Die Baeyersche Spannungstheorie und die Struktur des Diamanten", Journal f�r Praktische Chemie, vol. 98, pp. 315-353, 1918. http://dx.doi.org/10.1002/prac.19180980123

Multispectral Chiral Imaging with a Metalens.

Saturday, January 6th, 2018
No Gravatar

The title here is from an article on metalenses[1] which caught my eye.

(more…)

References

  1. M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, and F. Capasso, "Multispectral Chiral Imaging with a Metalens", Nano Letters, vol. 16, pp. 4595-4600, 2016. http://dx.doi.org/10.1021/acs.nanolett.6b01897

VSEPR Theory: Octet-busting or not with trimethyl chlorine, ClMe3.

Sunday, November 12th, 2017
No Gravatar

A few years back, I took a look at the valence-shell electron pair repulsion approach to the geometry of chlorine trifluoride, ClF3 using so-called ELF basins to locate centroids for both the covalent F-Cl bond electrons and the chlorine lone-pair electrons. Whereas the original VSEPR theory talks about five “electron pairs” totalling an octet-busting ten electrons surrounding chlorine, the electron density-based ELF approach located only ~6.8e surrounding the central chlorine and no “octet-busting”. The remaining electrons occupied fluorine lone pairs rather than the shared Cl-F regions. Here I take a look at ClMe3, as induced by the analysis of SeMe6.

(more…)

The di-anion of dilithium (not the Star Trek variety): Another “Hyper-bond”?

Saturday, September 16th, 2017
No Gravatar

Early in 2011, I wrote about how the diatomic molecule Be2 might be persuaded to improve upon its normal unbound state (bond order ~zero) by a double electronic excitation to a strongly bound species. I yesterday updated this post with further suggestions and one of these inspired this follow-up.

(more…)

The conformation of enols: revealed and explained.

Thursday, April 6th, 2017
No Gravatar

Enols are simple compounds with an OH group as a substituent on a C=C double bond and with a very distinct conformational preference for the OH group. Here I take a look at this preference as revealed by crystal structures, with the theoretical explanation.

(more…)

First, hexacoordinate carbon – now pentacoordinate nitrogen?

Saturday, March 25th, 2017
No Gravatar

A few years back I followed a train of thought here which ended with hexacoordinate carbon, then a hypothesis rather than a demonstrated reality. That reality was recently confirmed via a crystal structure, DOI:10.5517/CCDC.CSD.CC1M71QM[1]. Here is a similar proposal for penta-coordinate nitrogen.

(more…)

References

  1. M. Malischewski, and K. Seppelt, "Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethylbenzene Dication C6 (CH3 )6 2+ ", Angewandte Chemie International Edition, vol. 56, pp. 368-370, 2016. http://dx.doi.org/10.1002/anie.201608795

How does methane invert (its configuration)?

Thursday, March 16th, 2017
No Gravatar

This is a spin-off from the table I constructed here for further chemical examples of the classical/non-classical norbornyl cation conundrum. One possible entry would include the transition state for inversion of methane via a square planar geometry as compared with e.g. NiH4 for which the square planar motif is its minimum. So is square planar methane a true transition state for inversion (of configuration) of carbon?

(more…)

A periodic table for anomeric centres.

Saturday, August 6th, 2016
No Gravatar

In the last few posts, I have explored the anomeric effect as it occurs at an atom centre X. Here I try to summarise the atoms for which the effect is manifest in crystal structures.

(more…)

Anomeric effects at boron, silicon and phosphorus.

Friday, July 1st, 2016
No Gravatar

The anomeric effect occurs at 4-coordinate (sp3) carbon centres carrying two oxygen substituents and involves an alignment of a lone electron pair on one oxygen with the adjacent C-O σ*-bond of the other oxygen. Here I explore whether other centres can exhibit the phenomenon. I start with 4-coordinate boron, using the crystal structure search definition below (along with R < 0.1, no disorder, no errors).[1]anomeric-bo-sq

(more…)

References

  1. Henry Rzepa., "Anomeric effects at boron, silicon and phosphorus.", 2016. http://dx.doi.org/10.14469/hpc/696