Posts Tagged ‘chemical bonding’

Ammonium tetraphenylborate and the mystery of its π-facial hydrogen bonding.

Friday, March 10th, 2017
No Gravatar

A few years back, I did a post about the Pirkle reagent[1] and the unusual π-facial hydrogen bonding structure[2] it exhibits. For the Pirkle reagent, this bonding manifests as a close contact between the acidic OH hydrogen and the edge of a phenyl ring; the hydrogen bond is off-centre from the middle of the aryl ring. Here I update the topic, with a new search of the CSD (Cambridge structure database), but this time looking at the positional preference of that bond and whether it is on or off-centre. 

(more…)

References

  1. H.S. Rzepa, M.L. Webb, A.M.Z. Slawin, and D.J. Williams, "? Facial hydrogen bonding in the chiral resolving agent (S)-2,2,2-trifluoro-1-(9-anthryl)ethanol and its racemic modification", Journal of the Chemical Society, Chemical Communications, pp. 765, 1991. http://dx.doi.org/10.1039/c39910000765
  2. H.S. Rzepa, M.H. Smith, and M.L. Webb, "A crystallographic AM1 and PM3 SCF-MO investigation of strong OH ⋯π-alkene and alkyne hydrogen bonding interactions", J. Chem. Soc., Perkin Trans. 2, pp. 703-707, 1994. http://dx.doi.org/10.1039/P29940000703

More tetrahedral fun. Spherical aromaticity (and other oddities) in N4 and C4 systems?

Thursday, March 2nd, 2017
No Gravatar

The thread thus far. The post about Na2He introduced the electride anionic counter-ion to Na+ as corresponding topologically to a rare feature known as a non-nuclear attractor. This prompted speculation about other systems with such a feature, and the focus shifted to a tetrahedral arrangement of four hydrogen atoms as a dication, sharing a total of two valence electrons. The story now continues here.

(more…)

The “hydrogen bond”; its early history.

Saturday, December 31st, 2016
No Gravatar

My holiday reading has been Derek Lowe’s excellent Chemistry Book setting out 250 milestones in chemistry, organised by year. An entry for 1920 entitled hydrogen bonding seemed worth exploring in more detail here.

(more…)

Long C=C bonds.

Thursday, December 1st, 2016
No Gravatar

Following on from a search for long C-C bonds, here is the same repeated for C=C double bonds.

(more…)

Long C-C bonds.

Wednesday, November 30th, 2016
No Gravatar

In an earlier post, I searched for small C-C-C angles, finding one example that was also accompanied by an apparently exceptionally long C-C bond (2.18Å). But this arose from highly unusual bonding giving rise not to a single bond order but one closer to one half! How long can a “normal” (i.e single) C-C bond get, a question which has long fascinated chemists.

(more…)

What’s in a name? Carbenes: a reality check.

Sunday, September 11th, 2016
No Gravatar

To quote from Wikipedia: in chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The most ubiquitous type of carbene of recent times is the one shown below as 1, often referred to as a resonance stabilised or persistent carbene. This type is of interest because of its ability to act as a ligand to an astonishingly wide variety of metals, with many of the resulting complexes being important catalysts. The Wiki page on persistent carbenes shows them throughout in form 1 below, thus reinforcing the belief that they have a valence of two and by implication six (2×2 shared + 2 unshared) electrons in the valence shell of carbon. Here I consider whether this name is really appropriate.

(more…)

Molecule orbitals as indicators of reactivity: bromoallene.

Thursday, September 1st, 2016
No Gravatar

Bromoallene is a pretty simple molecule, with two non-equivalent double bonds. How might it react with an electrophile, say dimethyldioxirane (DMDO) to form an epoxide?[1] Here I explore the difference between two different and very simple approaches to predicting its reactivity. bromoallene

(more…)

References

  1. D. Christopher Braddock, A. Mahtey, H.S. Rzepa, and A.J.P. White, "Stable bromoallene oxides", Chem. Commun., vol. 52, pp. 11219-11222, 2016. http://dx.doi.org/10.1039/C6CC06395K

A periodic table for anomeric centres, this time with quantified interactions.

Monday, August 8th, 2016
No Gravatar

The previous post contained an exploration of the anomeric effect as it occurs at an atom centre X for which the effect is manifest in crystal structures. Here I quantify the effect, by selecting the test molecule MeO-X-OMe, where X is of two types:

(more…)

Stereoelectronic effects galore: bis(trifluoromethyl)trioxide.

Thursday, August 4th, 2016
No Gravatar

Here is a little molecule that can be said to be pretty electron rich. There are lots of lone pairs present, and not a few electron-deficient σ-bonds. I thought it might be fun to look at the stereoelectronic interactions set up in this little system.

(more…)

How does an OH or NH group approach an aromatic ring to hydrogen bond with its π-face?

Wednesday, June 22nd, 2016
No Gravatar

I previously used data mining of crystal structures to explore the directing influence of substituents on aromatic and heteroaromatic rings. Here I explore, quite literally, a different angle to the hydrogen bonding interactions between a benzene ring and OH or NH groups.

(more…)