Archive for the ‘reaction mechanism’ Category

Reaction coordinates vs Dynamic trajectories as illustrated by an example reaction mechanism.

Monday, March 20th, 2017
No Gravatar

The example a few posts back of how methane might invert its configuration by transposing two hydrogen atoms illustrated the reaction mechanism by locating a transition state and following it down in energy using an intrinsic reaction coordinate (IRC). Here I explore an alternative method based instead on computing a molecular dynamics trajectory (MD).

(more…)

Pyrophoric metals + the mechanism of thermal decomposition of magnesium oxalate.

Sunday, March 19th, 2017
No Gravatar

A pyrophoric metal is one that burns spontaneously in oxygen; I came across this phenomenon as a teenager doing experiments at home. Pyrophoric iron for example is prepared by heating anhydrous iron (II) oxalate in a sealed test tube (i.e. to 600° or higher). When the tube is broken open and the contents released, a shower of sparks forms. Not all metals do this; early group metals such as calcium undergo a different reaction releasing carbon monoxide and forming calcium carbonate and not the metal itself. Here as a prelude to the pyrophoric reaction proper, I take a look at this alternative mechanism using calculations.

(more…)

How does silane invert (its configuration)?

Thursday, March 16th, 2017
No Gravatar

In the previous post, I found intriguing the mechanism by which methane (CH4) inverts by transposing two of its hydrogens. Here I take a look at silane, SiH4.

(more…)

How does methane invert (its configuration)?

Thursday, March 16th, 2017
No Gravatar

This is a spin-off from the table I constructed here for further chemical examples of the classical/non-classical norbornyl cation conundrum. One possible entry would include the transition state for inversion of methane via a square planar geometry as compared with e.g. NiH4 for which the square planar motif is its minimum. So is square planar methane a true transition state for inversion (of configuration) of carbon?

(more…)

Forming a stabilized m-benzyne.

Friday, January 20th, 2017
No Gravatar

The story so far. Inspired by the report of the most polar neutral compound yet made, I suggested some candidates based on the azulene ring system that if made might be even more polar. This then led to considering a smaller π-analogue of azulene, m-benzyne. Here I ponder how a derivative of this molecule might be made, using computational profiling as one reality check.

(more…)

The smallest C-C-C angle?

Monday, October 31st, 2016
No Gravatar

Is asking a question such as “what is the smallest angle subtended at a chain of three connected 4-coordinate carbon atoms” just seeking another chemical record, or could it unearth interesting chemistry?

(more…)

σ or π nucleophilic reactivity of imines? A mechanistic reality check using substituents.

Sunday, October 9th, 2016
No Gravatar

Previously, a mechanistic twist to the oxidation of imines using peracid had emerged. Time to see how substituents respond to this mechanism.

(more…)

σ or π nucleophilic reactivity of imines? A mechanistic twist emerges.

Wednesday, September 28th, 2016
No Gravatar

The story so far. Imines react with a peracid to form either a nitrone (σ-nucleophile) or an oxaziridine (π-nucleophile).[1] The balance between the two is on an experimental knife-edge, being strongly influenced by substituents on the imine. Modelling these reactions using the “normal” mechanism for peracid oxidation did not reproduce this knife-edge, with ΔΔG (π-σ) 16.2 kcal/mol being rather too far from a fine balance.

(more…)

References

  1. D.R. Boyd, P.B. Coulter, N.D. Sharma, W. Jennings, and V.E. Wilson, "Normal, abnormal and pseudo-abnormal reaction pathways for the imine-peroxyacid reaction", Tetrahedron Letters, vol. 26, pp. 1673-1676, 1985. http://dx.doi.org/10.1016/S0040-4039(00)98582-4

σ or π? The ambident nucleophilic reactivity of imines: crystallographic and computational reality checks.

Wednesday, September 21st, 2016
No Gravatar

Nucleophiles are species that seek to react with an electron deficient centre by donating a lone or a π-bond pair of electrons. The ambident variety has two or more such possible sources in the same molecule, an example of which might be hydroxylamine or H2NOH. I previously discussed how for this example, the energetics allow the nitrogen lone pair (Lp) to win out over the O Lp. Here, I play a similar game, but this time setting an NLp up against a π-pair.

(more…)

Molecule orbitals as indicators of reactivity: bromoallene.

Thursday, September 1st, 2016
No Gravatar

Bromoallene is a pretty simple molecule, with two non-equivalent double bonds. How might it react with an electrophile, say dimethyldioxirane (DMDO) to form an epoxide?[1] Here I explore the difference between two different and very simple approaches to predicting its reactivity. bromoallene

(more…)

References

  1. D. Christopher Braddock, A. Mahtey, H.S. Rzepa, and A.J.P. White, "Stable bromoallene oxides", Chem. Commun., vol. 52, pp. 11219-11222, 2016. http://dx.doi.org/10.1039/C6CC06395K