Bond stretch isomerism. Did this idea first surface 100 years ago?

February 9th, 2016
No Gravatar

The phenomenon of bond stretch isomerism, two isomers of a compound differing predominantly in just one bond length, is one of those chemical concepts that wax and occasionally wane.[1] Here I explore such isomerism for the elements Ge, Sn and Pb.

Read the rest of this entry »

References

  1. J.A. Labinger, "Bond-stretch isomerism: a case study of a quiet controversy", Comptes Rendus Chimie, vol. 5, pp. 235-244, 2002. http://dx.doi.org/10.1016/S1631-0748(02)01380-2

A molecular balance for dispersion energy?

February 7th, 2016
No Gravatar

The geometry of cyclo-octatetraenes differs fundamentally from the lower homologue benzene in exhibiting slow (nuclear) valence bond isomerism rather than rapid (electronic) bond-equalising resonance. In 1992 Anderson and Kirsch[1] exploited this property to describe a simple molecular balance for estimating how two alkyl substituents on the ring might interact via the (currently very topical) mechanism of dispersion (induced-dipole-induced-dipole) attractions. These electron correlation effects are exceptionally difficult to model using formal quantum mechanics and are nowadays normally replaced by more empirical functions such as Grimme's D3BJ correction.[2] Here I explore aspects of how the small molecule below might be used to investigate the accuracy of such estimates of dispersion energies.

Read the rest of this entry »

References

  1. J.E. Anderson, and P.A. Kirsch, "Structural equilibria determined by attractive steric interactions. 1,6-Dialkylcyclooctatetraenes and their bond-shift and ring inversion investigated by dynamic NMR spectroscopy and molecular mechanics calculations", J. Chem. Soc., Perkin Trans. 2, pp. 1951, 1992. http://dx.doi.org/10.1039/P29920001951
  2. S. Grimme, S. Ehrlich, and L. Goerigk, "Effect of the damping function in dispersion corrected density functional theory", J. Comput. Chem., vol. 32, pp. 1456-1465, 2011. http://dx.doi.org/10.1002/jcc.21759

LEARN Workshop: Embedding Research Data as part of the research cycle

February 1st, 2016
No Gravatar

I attended the first (of a proposed five) workshops organised by LEARN (an EU-funded project that aims to ...Raise awareness in research data management (RDM) issues & research policy) on Friday. Here I give some quick bullet points relating to things that caught my attention and or interest. The program (and Twitter feed) can be found at https://learnrdm.wordpress.com where other's comments can also be seen. 

Read the rest of this entry »

Quintuple bonds: resurfaced.

January 31st, 2016
No Gravatar

Six years ago, I posted on the nature of a then recently reported[1] Cr-Cr quintuple bond. The topic resurfaced as part of the discussion on a more recent post on NSF3, and a sub-topic on the nature of the higher order bonding in C2. The comment made a connection between that discussion and the Cr-Cr bond alluded to above. I responded briefly to that comment, but because I want to include 3D rotatable surfaces, I expand the discussion here and not in the comment.

Read the rest of this entry »

References

  1. C. Hsu, J.K. Yu, C. Yen, G. Lee, Y. Wang, and Y. Tsai, "Quintuply-Bonded Dichromium(I) Complexes Featuring Metal-Metal Bond Lengths of 1.74 Å", Angewandte Chemie International Edition, vol. 47, pp. 9933-9936, 2008. http://dx.doi.org/10.1002/anie.200803859

Kinetic isotope effect models as a function of ring substituent for indole-3-carboxylic acids and indolin-2-ones.

January 20th, 2016
No Gravatar

The original strategic objective of my PhD researches in 1972-74 was to explore how primary kinetic hydrogen isotope effects might be influenced by the underlying structures of the transition states involved. Earlier posts dealt with how one can construct quantum-chemical models of these transition states that fit the known properties of the reactions. Now, one can reverse the strategy by computing the expected variation with structure to see if anything interesting might emerge, and then if it does, open up the prospect of further exploration by experiment. Here I will use the base-catalysed enolisation of 1,3-dimethylindolin-2-ones and the decarboxylation of 3-indole carboxylates to explore this aspect.

Read the rest of this entry »

VSEPR Theory: A closer look at trifluorothionitrile, NSF3.

January 16th, 2016
No Gravatar

The post on applying VSEPR ("valence shell electron pair repulsion") theory to the geometry of ClF3 has proved perennially popular. So here is a follow-up on another little molecue, F3SN. As the name implies, it is often represented with an S≡N bond. Here I take a look at the conventional analysis.

Read the rest of this entry »

I’ve started so I’ll finish. Kinetic isotope effect models for a general acid as a catalyst in the protiodecarboxylation of indoles.

January 10th, 2016
No Gravatar

Earlier I explored models for the heteroaromatic electrophilic protiodecarboxylation of an 3-substituted indole, focusing on the role of water as the proton transfer and delivery agent. Next, came models for both water and the general base catalysed ionization of indolinones. Here I explore general acid catalysis by evaluating the properties of two possible models for decarboxylation of 3-indole carboxylic acid, one involving proton transfer (PT) from neutral water in the presence of covalent un-ionized HCl (1) and one with PT from a protonated water resulting from ionised HCl (2).

Read the rest of this entry »

I’ve started so I’ll finish. The ionisation mechanism and kinetic isotope effects for 1,3-dimethylindolin-2 one

January 7th, 2016
No Gravatar

This is the third and final study deriving from my Ph.D.[1]. The first two topics dealt with the mechanism of heteroaromatic electrophilic attack using either a diazonium cation or a proton as electrophile, followed by either proton abstraction or carbon dioxide loss from the resulting Wheland intermediate. This final study inverts this sequence by starting with the proton abstraction from an indolinone by a base to create/aromatize to a indole-2-enolate intermediate, which only then is followed by electrophilic attack (by iodine).  Here I explore what light quantum chemical modelling might cast on the mechanism.

Read the rest of this entry »

References

  1. B.C. Challis, and H.S. Rzepa, "Heteroaromatic hydrogen exchange reactions. Part VIII. The ionisation of 1,3-dimethylindolin-2-one", J. Chem. Soc., Perkin Trans. 2, pp. 1822, 1975. http://dx.doi.org/10.1039/P29750001822

Some examples of open access publications citing managed research data (RDM).

January 5th, 2016
No Gravatar

In May 2015, the EPSRC funding council in the UK required researchers to publish the outcomes of the funded work to include an OA (open access) version of the narrative and to cite the managed research data used to support the research with a DOI (digital object identifier). I was discussing these aspects with a senior manager (research outcomes) at the EPSRC and he asked me to provide some examples from my area of chemistry; here are some.

Read the rest of this entry »

I’ve started so I’ll finish. Mechanism and kinetic isotope effects for protiodecarboxylation of indoles.

January 2nd, 2016
No Gravatar

Another mechanistic study we started in 1972[1] is here 40+ years on subjected to quantum mechanical scrutiny.

Read the rest of this entry »

References

  1. B.C. Challis, and H.S. Rzepa, "Heteroaromatic hydrogen exchange reactions. Part 9. Acid catalysed decarboxylation of indole-3-carboxylic acids", J. Chem. Soc., Perkin Trans. 2, pp. 281, 1977. http://dx.doi.org/10.1039/P29770000281